Skip to main content

Model-Based Error Detection for Industrial Automation Systems Using LSTM Networks

  • Conference paper
  • First Online:
Model-Based Safety and Assessment (IMBSA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12297))

Included in the following conference series:

Abstract

The increasing complexity of modern automation systems leads to inevitable faults. At the same time, structural variability and untrivial interaction of the sophisticated components makes it harder and harder to apply traditional fault detection methods. Consequently, the popularity of Deep Learning (DL) fault detection methods grows. Model-based system design tools such as Simulink allow the development of executable system models. Besides the design flexibility, these models can provide the training data for DL-based error detectors.

This paper describes the application of an LSTM-based error detector for a system of two industrial robotic manipulators. A detailed Simulink model provides the training data for an LSTM predictor. Error detection is achieved via intelligent processing of the residual between the original signal and the LSTM prediction using two methods. The first method is based on the non-parametric dynamic thresholding. The second method exploits the Gaussian distribution of the residual. The paper presents the results of extensive model-based fault injection experiments that allow the comparison of these methods and the evaluation of the error detection performance for varying error magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, S., Lavin, A., Purdy, S., Agha, Z.: Unsupervised real-time anomaly detection for streaming data. Neurocomputing (2017). https://doi.org/10.1016/j.neucom.2017.04.070

  2. Buda, T.S., Caglayan, B., Assem, H.: DeepAD: a generic framework based on deep learning for time series anomaly detection. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10937, pp. 577–588. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93034-3_46

    Chapter  Google Scholar 

  3. Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: a survey (2019)

    Google Scholar 

  4. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  5. Chauhan, S., Vig, L.: Anomaly detection in ECG time signals via deep long short-term memory networks. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–7. IEEE (2015)

    Google Scholar 

  6. Clark, J., Liu, Z., Japkowicz, N.: Adaptive threshold for outlier detection on data streams. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), pp. 41–49. IEEE (2018)

    Google Scholar 

  7. Ding, K., Ding, S., Morozov, A., Fabarisov, T., Janschek, K.: On-line error detection and mitigation for time-series data of cyber-physical systems using deep learning based methods. In: 2019 15th European Dependable Computing Conference (EDCC), pp. 7–14. IEEE (2019)

    Google Scholar 

  8. Ergen, T., Mirza, A.H., Kozat, S.S.: Unsupervised and semi-supervised anomaly detection with LSTM neural networks. arXiv preprint arXiv:1710.09207 (2017)

  9. Fabarisov, T.: Fault injection block (2020). https://github.com/Flatag/FIBlock/

  10. MATLAB and Simulink files for modeling and simulation of ROBOTIS OpenManipulator. https://github.com/mathworks-robotics/designing-robot-manipulator-algorithms. Accessed 20 May 2020

  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  12. Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018)

    Google Scholar 

  13. Lindemann, B., Jazdi, N., Weyrich, M.: Anomaly detection for quality control based on sequence-to-sequence LSTM networks. AT-Automatisierungstechnik 67(12), 1058–1068 (2019)

    Article  Google Scholar 

  14. Lindemann, B., Fesenmayr, F., Jazdi, N., Weyrich, M.: Anomaly detection in discrete manufacturing using self-learning approaches. Proc. CIRP 79, 313–318 (2019)

    Article  Google Scholar 

  15. Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.: LSTM-based encoder-decoder for multi-sensor anomaly detection. arXiv preprint arXiv:1607.00148 (2016)

  16. Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term memory networks for anomaly detection in time series. In: Proceedings, p. 89. Presses universitaires de Louvain (2015)

    Google Scholar 

  17. Designing Robot Manipulator Algorithms. https://ww2.mathworks.cn/matlabcentral/fileexchange/65316-designing-robot-manipulator-algorithms. Accessed 20 May 2020

  18. Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder. IEEE Robot. Autom. Lett. 3(3), 1544–1551 (2018)

    Article  Google Scholar 

  19. Park, D., Kim, S., An, Y., Jung, J.Y.: LiReD: a light-weight real-time fault detection system for edge computing using LSTM recurrent neural networks. Sensors 18, 2110 (2018). https://doi.org/10.3390/s18072110

    Article  Google Scholar 

  20. Schervish, M.: P values: What they are and what they are not. Am. Stat. 50, 203–206 (1996). https://doi.org/10.1080/00031305.1996.10474380

    Article  MathSciNet  Google Scholar 

  21. Shipmon, D.T., Gurevitch, J.M., Piselli, P.M., Edwards, S.T.: Time series anomaly detection; detection of anomalous drops with limited features and sparse examples in noisy highly periodic data. arXiv preprint arXiv:1708.03665 (2017)

  22. Singh, A.: Anomaly detection for temporal data using long short-term memory (LSTM) (2017)

    Google Scholar 

  23. Wang, K., Stolfo, S.J.: Anomalous payload-based network intrusion detection. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 203–222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30143-1_11

    Chapter  Google Scholar 

  24. Zhu, L., Laptev, N.: Deep and confident prediction for time series at Uber. In: 2017 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 103–110. IEEE (2017)

    Google Scholar 

  25. Zohrevand, Z., Glässer, U.: Should i raise the red flag? A comprehensive survey of anomaly scoring methods toward mitigating false alarms. arXiv preprint arXiv:1904.06646 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, S., Morozov, A., Vock, S., Weyrich, M., Janschek, K. (2020). Model-Based Error Detection for Industrial Automation Systems Using LSTM Networks. In: Zeller, M., Höfig, K. (eds) Model-Based Safety and Assessment. IMBSA 2020. Lecture Notes in Computer Science(), vol 12297. Springer, Cham. https://doi.org/10.1007/978-3-030-58920-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58920-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58919-6

  • Online ISBN: 978-3-030-58920-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics