Skip to main content

Local Correlation Consistency for Knowledge Distillation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

Sufficient knowledge extraction from the teacher network plays a critical role in the knowledge distillation task to improve the performance of the student network. Existing methods mainly focus on the consistency of instance-level features and their relationships, but neglect the local features and their correlation, which also contain many details and discriminative patterns. In this paper, we propose the local correlation exploration framework for knowledge distillation. It models three kinds of local knowledge, including intra-instance local relationship, inter-instance relationship on the same local position, and the inter-instance relationship across different local positions. Moreover, to make the student focus on those informative local regions of the teacher’s feature maps, we propose a novel class-aware attention module to highlight the class-relevant regions and remove the confusing class-irrelevant regions, which makes the local correlation knowledge more accurate and valuable. We conduct extensive experiments and ablation studies on challenging datasets, including CIFAR100 and ImageNet, to show our superiority over the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguilar, G., Ling, Y., Zhang, Y., Yao, B., Fan, X., Guo, E.: Knowledge distillation from internal representations. In: AAAI (2020)

    Google Scholar 

  2. Chung, I., Park, S., Kim, J., Kwak, N.: Feature-map-level online adversarial knowledge distillation. In: ICML (2020)

    Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE CVPR, pp. 248–255 (2009)

    Google Scholar 

  4. Dong, X., Yang, Y.: Network pruning via transformable architecture search. In: NeurIPS, pp. 759–770 (2019)

    Google Scholar 

  5. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. In: ICLR (2016)

    Google Scholar 

  6. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: NeurIPS, pp. 1135–1143 (2015)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE CVPR, pp. 770–778 (2016)

    Google Scholar 

  8. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NeurIPS Deep Learning Workshop (2014)

    Google Scholar 

  9. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: IEEE CVPR, pp. 7132–7141 (2018)

    Google Scholar 

  11. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neural networks: training neural networks with low precision weights and activations. J. Mach. Learn. Res. 18(1), 6869–6898 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Kim, H.G., et al.: Knowledge distillation using output errors for self-attention end-to-end models. In: ICASSP, pp. 6181–6185 (2019)

    Google Scholar 

  13. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Technical report (2009)

    Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NeurIPS, pp. 1097–1105 (2012)

    Google Scholar 

  15. Lan, X., Zhu, X., Gong, S.: Knowledge distillation by on-the-fly native ensemble. In: NeurIPS, pp. 7528–7538 (2018)

    Google Scholar 

  16. Liu, Y., et al.: Knowledge distillation via instance relationship graph. In: IEEE CVPR, pp. 7096–7104 (2019)

    Google Scholar 

  17. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient inference. In: ICLR (2017)

    Google Scholar 

  18. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: IEEE CVPR, pp. 3967–3976 (2019)

    Google Scholar 

  19. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: BMVC (2015)

    Google Scholar 

  20. Peng, B., et al.: Correlation congruence for knowledge distillation. In: IEEE ICCV, pp. 5007–5016 (2019)

    Google Scholar 

  21. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: IEEE ICCV, pp. 618–626 (2017)

    Google Scholar 

  22. Shu, C., Li, P., Xie, Y., Qu, Y., Dai, L., Ma, L.: Knowledge squeezed adversarial network compression. arXiv preprint arXiv:1904.05100 (2019)

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  24. Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. In: NeurIPS, pp. 1988–1996 (2014)

    Google Scholar 

  25. Tan, M., Le, Q.V.: Efficientnet: rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019)

  26. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. In: ICLR (2020)

    Google Scholar 

  27. Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: IEEE ICCV, pp. 1365–1374 (2019)

    Google Scholar 

  28. Wang, F., et al.: The devil of face recognition is in the noise. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 780–795. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_47

    Chapter  Google Scholar 

  29. Wang, F., et al.: Residual attention network for image classification. In: IEEE CVPR, pp. 3156–3164 (2017)

    Google Scholar 

  30. Wu, J., et al.: Deep comprehensive correlation mining for image clustering. In: IEEE ICCV, pp. 8150–8159 (2019)

    Google Scholar 

  31. Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional neural networks for mobile devices. In: IEEE CVPR, pp. 4820–4828 (2016)

    Google Scholar 

  32. Yang, L., Song, Q., Wu, Y., Hu, M.: Attention inspiring receptive-fields network for learning invariant representations. IEEE TNNLS 30(6), 1744–1755 (2018)

    Google Scholar 

  33. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: fast optimization, network minimization and transfer learning. In: IEEE CVPR, pp. 7130–7138 (2017)

    Google Scholar 

  34. You, S., Huang, T., Yang, M., Wang, F., Qian, C., Zhang, C.: GreedyNAS: towards fast one-shot NAS with greedy supernet. In: IEEE CVPR, pp. 1999–2008 (2020)

    Google Scholar 

  35. You, S., Xu, C., Xu, C., Tao, D.: Learning from multiple teacher networks. In: KDD, pp. 1285–1294 (2017)

    Google Scholar 

  36. You, S., Xu, C., Xu, C., Tao, D.: Learning with single-teacher multi-student. In: AAAI, pp. 4390–4397 (2018)

    Google Scholar 

  37. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: BMVC (2016)

    Google Scholar 

  38. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: ICLR (2017)

    Google Scholar 

  39. Zhang, L., Song, J., Gao, A., Chen, J., Bao, C., Ma, K.: Be your own teacher: improve the performance of convolutional neural networks via self distillation. In: IEEE ICCV, pp. 3713–3722 (2019)

    Google Scholar 

  40. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: IEEE CVPR, pp. 6848–6856 (2018)

    Google Scholar 

  41. Zhang, Z., Ning, G., He, Z.: Knowledge projection for deep neural networks. arXiv preprint arXiv:1710.09505 (2017)

Download references

Acknowledgment

Jianlong Wu is the corresponding author, who is supported by the Fundamental Research Funds and the Future Talents Research Funds of Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlong Wu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1049 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Wu, J., Fang, H., Liao, Y., Wang, F., Qian, C. (2020). Local Correlation Consistency for Knowledge Distillation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12357. Springer, Cham. https://doi.org/10.1007/978-3-030-58610-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58610-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58609-6

  • Online ISBN: 978-3-030-58610-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics