Skip to main content

FreeCam3D: Snapshot Structured Light 3D with Freely-Moving Cameras

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12372))

Included in the following conference series:

Abstract

A 3D imaging and mapping system that can handle both multiple-viewers and dynamic-objects is attractive for many applications. We propose a freeform structured light system that does not rigidly constrain camera(s) to the projector. By introducing an optimized phase-coded aperture in the projector, we transform the projector pattern to encode depth in its defocus robustly; this allows a camera to estimate depth, in projector coordinates, using local information. Additionally, we project a Kronecker-multiplexed pattern that provides global context to establish correspondence between camera and projector pixels. Together with aperture coding and projected pattern, the projector offers a unique 3D labeling for every location of the scene. The projected pattern can be observed in part or full by any camera, to reconstruct both the 3D map of the scene and the camera pose in the projector coordinates. This system is optimized using a fully differentiable rendering model and a CNN-based reconstruction. We build a prototype and demonstrate high-quality 3D reconstruction with an unconstrained camera, for both dynamic scenes and multi-camera systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benveniste, R., Ünsalan, C.: A color invariant based binary coded structured light range scanner for shiny objects. In: International Conference on Pattern Recognition (ICPR), pp. 798–801 (2010)

    Google Scholar 

  2. Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly Media Inc., Sebastopol (2008)

    Google Scholar 

  3. Chakrabarti, A.: Learning sensor multiplexing design through back-propagation. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 3081–3089 (2016)

    Google Scholar 

  4. Chang, J., Wetzstein, G.: Deep optics for monocular depth estimation and 3D object detection. In: IEEE International Conference on Computer Vision (ICCV), pp. 10193–10202 (2019)

    Google Scholar 

  5. Farid, H., Simoncelli, E.P.: Range estimation by optical differentiation. J. Opt. Soc. Am. A (JOSA A) 15(7), 1777–1786 (1998)

    Article  Google Scholar 

  6. Furukawa, R., Nagamatsu, G., Kawasaki, H.: Simultaneous shape registration and active stereo shape reconstruction using modified bundle adjustment. In: International Conference on 3D Vision (3DV), pp. 453–462 (2019)

    Google Scholar 

  7. Furukawa, R., et al.: 3D endoscope system using asynchronously blinking grid pattern projection for HDR image synthesis. In: Cardoso, M.J., et al. (eds.) CARE/CLIP -2017. LNCS, vol. 10550, pp. 16–28. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67543-5_2

    Chapter  Google Scholar 

  8. Gao, X.S., Hou, X.R., Tang, J., Cheng, H.F.: Complete solution classification for the perspective-three-point problem. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 25(8), 930–943 (2003)

    Article  Google Scholar 

  9. Girod, B., Scherock, S.: Depth from defocus of structured light. In: Optics, Illumination, and Image Sensing for Machine Vision IV, vol. 1194, pp. 209–215 (1990)

    Google Scholar 

  10. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 270–279 (2017)

    Google Scholar 

  11. Goodman, J.W.: Introduction to Fourier optics. Roberts and Company Publishers, Greenwood Village (2005)

    Google Scholar 

  12. Guo, Q., Alexander, E., Zickler, T.: Focal track: depth and accommodation with oscillating lens deformation. In: IEEE International Conference on Computer Vision (ICCV), pp. 966–974 (2017)

    Google Scholar 

  13. Haim, H., Elmalem, S., Giryes, R., Bronstein, A.M., Marom, E.: Depth estimation from a single image using deep learned phase coded mask. IEEE Trans. Comput. Imaging (TCI) 4(3), 298–310 (2018)

    Article  Google Scholar 

  14. Hitoshi, M., Hiroshi, K., Ryo, F.: Depth from projector’s defocus based on multiple focus pattern projection. IPSJ Trans. Comput. Vis. Appl. (CVA) 6, 88–92 (2014)

    Article  Google Scholar 

  15. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 2017–2025 (2015)

    Google Scholar 

  16. Kawasaki, H., Furukawa, R., Sagawa, R., Yagi, Y.: Dynamic scene shape reconstruction using a single structured light pattern. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE (2008)

    Google Scholar 

  17. Kawasaki, H., Horita, Y., Masuyama, H., Ono, S., Kimura, M., Takane, Y.: Optimized aperture for estimating depth from projector’s defocus. In: International Conference on 3D Vision (3DV), pp. 135–142 (2013)

    Google Scholar 

  18. Kawasaki, H., et al.: Structured light with coded aperture for wide range 3D measurement. In: IEEE Conference on Image Processing (ICIP), pp. 2777–2780 (2012)

    Google Scholar 

  19. Lee, J., Gupta, M.: Stochastic exposure coding for handling multi-ToF-camera interference. In: IEEE International Conference on Computer Vision (ICCV), pp. 7880–7888 (2019)

    Google Scholar 

  20. Lei, Y., Bengtson, K.R., Li, L., Allebach, J.P.: Design and decoding of an m-array pattern for low-cost structured light 3D reconstruction systems. In: IEEE International Conference on Image Processing (ICIP), pp. 2168–2172 (2013)

    Google Scholar 

  21. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: An accurate o(\(n\)) solution to the P\(n\)P problem. Int. J. Comput. Vis. (IJCV) 81(2), 155 (2009). https://doi.org/10.1007/s11263-008-0152-6

    Article  Google Scholar 

  22. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. (TOG) 26(3), 70 (2007)

    Article  Google Scholar 

  23. Li, Q., Biswas, M., Pickering, M.R., Frater, M.R.: Accurate depth estimation using structured light and passive stereo disparity estimation. In: IEEE International Conference on Image Processing (ICIP), pp. 969–972 (2011)

    Google Scholar 

  24. Li, W., et al.: InteriorNet: mega-scale multi-sensor photo-realistic indoor scenes dataset. arXiv:1809.00716 (2018)

  25. Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4040–4048 (2016)

    Google Scholar 

  26. McCormac, J., Handa, A., Leutenegger, S., Davison, A.J.: SceneNet RGB-D: 5M photorealistic images of synthetic indoor trajectories with ground truth. arXiv:1612.05079 (2016)

  27. Metzler, C.A., Ikoma, H., Peng, Y., Wetzstein, G.: Deep optics for single-shot high-dynamic-range imaging. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1375–1385 (2020)

    Google Scholar 

  28. Microsoft: Xbox 360 Kinect (2010). http://www.xbox.com/en-US/kinect

  29. Microsoft: Kinect for Windows (2013). http://www.microsoft.com/en-us/

  30. Nayar, S., Watanabe, M., Noguchi, M.: Real-time focus range sensor. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 18(12), 1186–1198 (1996)

    Article  Google Scholar 

  31. Pavani, S.R.P., et al.: Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. Acad. Sci. (PNAS) 106(9), 2995–2999 (2009)

    Article  Google Scholar 

  32. Riegler, G., Liao, Y., Donne, S., Koltun, V., Geiger, A.: Connecting the dots: learning representations for active monocular depth estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7624–7633 (2019)

    Google Scholar 

  33. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention (MICCAI), pp. 234–241 (2015)

    Google Scholar 

  34. Salvi, J., Fernandez, S., Pribanic, T., Llado, X.: A state of the art in structured light patterns for surface profilometry. Pattern Recogn. 43(8), 2666–2680 (2010)

    Article  Google Scholar 

  35. Shechtman, Y., Sahl, S.J., Backer, A.S., Moerner, W.: Optimal point spread function design for 3D imaging. Phys. Rev. Lett. (PRL) 113(13), 133902 (2014)

    Article  Google Scholar 

  36. Sitzmann, V., et al.: End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Trans. Graph. (TOG) 37(4), 1–13 (2018)

    Article  Google Scholar 

  37. Sun, Q., Tseng, E., Fu, Q., Heidrich, W., Heide, F.: Learning rank-1 diffractive optics for single-shot high dynamic range imaging. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1386–1396 (2020)

    Google Scholar 

  38. Tang, S., Zhang, X., Tu, D.: Fuzzy decoding in color-coded structured light. Opt. Eng. 53(10), 104104 (2014)

    Article  Google Scholar 

  39. Torr, P.H., Zisserman, A.: MLESAC: a new robust estimator with application to estimating image geometry. Comput. Vis. Image Underst. (CVIU) 78(1), 138–156 (2000)

    Article  Google Scholar 

  40. Ulusoy, A.O., Calakli, F., Taubin, G.: Robust one-shot 3D scanning using loopy belief propagation. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 15–22 (2010)

    Google Scholar 

  41. Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A., Tumblin, J.: Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing. ACM Trans. Graph. (TOG) 26(3), 69 (2007)

    Article  Google Scholar 

  42. Watanabe, M., Nayar, S.K.: Rational filters for passive depth from defocus. Int. J. Comput. Vis. (IJCV) 27(3), 203–225 (1998). https://doi.org/10.1023/A:1007905828438

    Article  Google Scholar 

  43. Wu, Y., Boominathan, V., Chen, H., Sankaranarayanan, A., Veeraraghavan, A.: PhaseCam3D-learning phase masks for passive single view depth estimation. In: IEEE International Conference on Computational Photography (ICCP), pp. 1–12 (2019)

    Google Scholar 

  44. Zhang, X., Li, Y., Zhu, L.: Color code identification in coded structured light. Appl. Opt. 51(22), 5340–5356 (2012)

    Article  Google Scholar 

  45. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1851–1858 (2017)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by NSF grants IIS1652633 and CCF1652569, DARPA NESD program N66001-17-C-4012, and JSPS KAKENHI grants JP20H00611 and JP16KK0151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Veeraraghavan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 96667 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Y. et al. (2020). FreeCam3D: Snapshot Structured Light 3D with Freely-Moving Cameras. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12372. Springer, Cham. https://doi.org/10.1007/978-3-030-58583-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58583-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58582-2

  • Online ISBN: 978-3-030-58583-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics