Skip to main content

Exploiting Temporal Coherence for Self-Supervised One-Shot Video Re-identification

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12372))

Included in the following conference series:

Abstract

While supervised techniques in re-identification are extremely effective, the need for large amounts of annotations makes them impractical for large camera networks. One-shot re-identification, which uses a singular labeled tracklet for each identity along with a pool of unlabeled tracklets, is a potential candidate towards reducing this labeling effort. Current one-shot re-identification methods function by modeling the inter-relationships amongst the labeled and the unlabeled data, but fail to fully exploit such relationships that exist within the pool of unlabeled data itself. In this paper, we propose a new framework named Temporal Consistency Progressive Learning, which uses temporal coherence as a novel self-supervised auxiliary task in the one-shot learning paradigm to capture such relationships amongst the unlabeled tracklets. Optimizing two new losses, which enforce consistency on a local and global scale, our framework can learn richer and more discriminative representations. Extensive experiments on two challenging video re-identification datasets - MARS and DukeMTMC-VideoReID - demonstrate that our proposed method is able to estimate the true labels of the unlabeled data more accurately by up to \(8\%\), and obtain significantly better re-identification performance compared to the existing state-of-the-art techniques .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Pseudo-labeling and confirmation bias in deep semi-supervised learning. arXiv preprint arXiv:1908.02983 (2019)

  2. Bak, S., Carr, P.: One-shot metric learning for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2990–2999 (2017)

    Google Scholar 

  3. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised learning. IEEE Trans. Neural Netw. 20(3), 542 (2009)

    Article  Google Scholar 

  4. Chen, D., Li, H., Xiao, T., Yi, S., Wang, X.: Video person re-identification with competitive snippet-similarity aggregation and co-attentive snippet embedding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1169–1178 (2018)

    Google Scholar 

  5. Chen, T., et al.: ABD-net: attentive but diverse person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8351–8361 (2019)

    Google Scholar 

  6. Chen, Y., Zhu, X., Gong, S.: Deep association learning for unsupervised video person re-identification. In: Proceedings of the British Machine Vision Conference (2018)

    Google Scholar 

  7. Ding, G., Zhang, S., Khan, S., Tang, Z., Zhang, J., Porikli, F.: Feature affinity based pseudo labeling for semi-supervised person re-identification. Trans. Multimedia 21(11), 2891–2902 (2019)

    Article  Google Scholar 

  8. Dosovitskiy, A., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative unsupervised feature learning with convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 766–774 (2014)

    Google Scholar 

  9. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. arXiv preprint arXiv:1803.07728 (2018)

  10. Rezatofighi, S.H, Milan, A., Zhang, Z., Shi, Q., Dick, A., Reid, I.: Joint probabilistic matching using m-best solutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 136–145 (2016)

    Google Scholar 

  11. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)

  12. Kolesnikov, A., Zhai, X., Beyer, L.: Revisiting self-supervised visual representation learning. arXiv preprint arXiv:1901.09005 (2019)

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  14. Lee, D.H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol. 3 (2013)

    Google Scholar 

  15. Li, M., Zhu, X., Gong, S.: Unsupervised tracklet person re-identification. IEEE Trans. Pattern Anal. Mach. Intell. 42(7), 1770–1782 (2019)

    Google Scholar 

  16. Lin, Y., Dong, X., Zheng, L., Yan, Y., Yang, Y.: A bottom-up clustering approach to unsupervised person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8738–8745 (2019)

    Google Scholar 

  17. Liu, X., Song, M., Tao, D., Zhou, X., Chen, C., Bu, J.: Semi-supervised coupled dictionary learning for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3550–3557 (2014)

    Google Scholar 

  18. Liu, Z., Wang, D., Lu, H.: Stepwise metric promotion for unsupervised video person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2429–2438 (2017)

    Google Scholar 

  19. Misra, I., Zitnick, C.L., Hebert, M.: Shuffle and learn: unsupervised learning using temporal order verification. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 527–544. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_32

    Chapter  Google Scholar 

  20. Miyato, T., Maeda, S.I., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)

    Article  Google Scholar 

  21. Mobahi, H., Collobert, R., Weston, J.: Deep learning from temporal coherence in video. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 737–744. ACM (2009)

    Google Scholar 

  22. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving Jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  23. Oliver, A., Odena, A., Raffel, C.A., Cubuk, E.D., Goodfellow, I.: Realistic evaluation of deep semi-supervised learning algorithms. In: Advances in Neural Information Processing Systems, pp. 3235–3246 (2018)

    Google Scholar 

  24. Paul, S., Roy, S., Roy-Chowdhury, A.K.: Incorporating scalability in unsupervised spatio-temporal feature learning. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1503–1507. IEEE (2018)

    Google Scholar 

  25. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  26. Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 17–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_2

    Chapter  Google Scholar 

  27. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, pp. 1195–1204 (2017)

    Google Scholar 

  28. Wang, G., Lai, J., Huang, P., Xie, X.: Spatial-temporal person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8933–8940 (2019)

    Google Scholar 

  29. Wu, Y., Lin, Y., Dong, X., Yan, Y., Bian, W., Yang, Y.: Progressive learning for person re-identification with one example. IEEE Trans. Image Process. 28(6), 2872–2881 (2019)

    Article  MathSciNet  Google Scholar 

  30. Wu, Y., Lin, Y., Dong, X., Yan, Y., Ouyang, W., Yang, Y.: Exploit the unknown gradually: one-shot video-based person re-identification by stepwise learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5177–5186 (2018)

    Google Scholar 

  31. Xu, S., Cheng, Y., Gu, K., Yang, Y., Chang, S., Zhou, P.: Jointly attentive spatial-temporal pooling networks for video-based person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4733–4742 (2017)

    Google Scholar 

  32. Ye, M., Ma, A.J., Zheng, L., Li, J., Yuen, P.C.: Dynamic label graph matching for unsupervised video re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5142–5150 (2017)

    Google Scholar 

  33. Ye, M., Zhang, X., Yuen, P.C., Chang, S.F.: Unsupervised embedding learning via invariant and spreading instance feature. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6210–6219 (2019)

    Google Scholar 

  34. Yu, H.X., Wu, A., Zheng, W.S.: Cross-view asymmetric metric learning for unsupervised person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 994–1002 (2017)

    Google Scholar 

  35. Yu, H.X., Zheng, W.S., Wu, A., Guo, X., Gong, S., Lai, J.H.: Unsupervised person re-identification by soft multilabel learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2148–2157 (2019)

    Google Scholar 

  36. Zheng, L., et al.: MARS: a video benchmark for large-scale person re-identification. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 868–884. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_52

    Chapter  Google Scholar 

  37. Zheng, L., Yang, Y., Hauptmann, A.G.: Person re-identification: past, present and future. arXiv preprint arXiv:1610.02984 (2016)

  38. Zhou, K., Yang, Y., Cavallaro, A., Xiang, T.: Omni-scale feature learning for person re-identification. arXiv preprint arXiv:1905.00953 (2019)

Download references

Acknowledgments

We thank Sourya Roy, Sujoy Paul and Abhishek Aich for their assistance, advice and critique. The work was partially supported by NSF grant 1544969 and ONR grant N00014-19-1-2264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dripta S. Raychaudhuri .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7427 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raychaudhuri, D.S., Roy-Chowdhury, A.K. (2020). Exploiting Temporal Coherence for Self-Supervised One-Shot Video Re-identification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12372. Springer, Cham. https://doi.org/10.1007/978-3-030-58583-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58583-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58582-2

  • Online ISBN: 978-3-030-58583-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics