Skip to main content

Learn Distributed GAN with Temporary Discriminators

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12372))

Included in the following conference series:

Abstract

In this work, we propose a method for training distributed GAN with sequential temporary discriminators. Our proposed method tackles the challenge of training GAN in the federated learning manner: How to update the generator with a flow of temporary discriminators? We apply our proposed method to learn a self-adaptive generator with a series of local discriminators from multiple data centers. We show our design of loss function indeed learns the correct distribution with provable guarantees. The empirical experiments show that our approach is capable of generating synthetic data which is practical for real-world applications such as training a segmentation model. Our TDGAN Code is available at: https://github.com/huiqu18/TDGAN-PyTorch.

H. Qu, Y. Zhang and Q. Chang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarap, A.F.: Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375 (2018)

  2. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory Aware Synapses: Learning What (not) to Forget. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 144–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_9

    Chapter  Google Scholar 

  3. Annas, G.J., et al.: Hipaa regulations-a new era of medical-record privacy? N. Engl. J. Med. 348(15), 1486–1490 (2003)

    Article  Google Scholar 

  4. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. arXiv preprint arXiv:1701.07875 (2017)

  5. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Freymann, J.B., Farahani, K., Davatzikos, C.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. data 4, 170117 (2017)

    Article  Google Scholar 

  6. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)

  7. Chang, Q., et al.: Synthetic learning: Learn from distributed asynchronized discriminator gan without sharing medical image data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13856–13866 (2020)

    Google Scholar 

  8. Dai, W., Dong, N., Wang, Z., Liang, X., Zhang, H., Xing, E.P.: SCAN: structure correcting adversarial network for organ segmentation in chest X-Rays. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 263–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_30

    Chapter  Google Scholar 

  9. Durugkar, I., Gemp, I., Mahadevan, S.: Generative multi-adversarial networks (2016)

    Google Scholar 

  10. Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: a client level perspective. arXiv preprint arXiv:1712.07557 (2017)

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  12. Gostin, L.O., Levit, L.A., Nass, S.J., et al.: Beyond the HIPAA privacy rule: enhancing privacy, improving health through research. National Academies Press (2009)

    Google Scholar 

  13. Guimaraes, G.L., Sanchez-Lengeling, B., Outeiral, C., Farias, P.L.C., Aspuru-Guzik, A.: Objective-reinforced generative adversarial networks (organ) for sequence generation models. arXiv preprint arXiv:1705.10843 (2017)

  14. Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays, F., Augenstein, S., Eichner, H., Kiddon, C., Ramage, D.: Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604 (2018)

  15. Hardy, C., Le Merrer, E., Sericola, B.: Md-gan: Multi-discriminator generative adversarial networks for distributed datasets. In: 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 866–877. IEEE (2019)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/cvpr.2016.90

  17. Hochberg, J.: Depth perception loss with local monocular suppression: a problem in the explanation of stereopsis. Science 145(3638), 1334–1336 (1964)

    Article  Google Scholar 

  18. Hoffman, J., Wang, D., Yu, F., Darrell, T.: FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation (2016)

    Google Scholar 

  19. Hsu, C.C., Hwang, H.T., Wu, Y.C., Tsao, Y., Wang, H.M.: Voice conversion from unaligned corpora using variational autoencoding wasserstein generative adversarial networks. arXiv preprint arXiv:1704.00849 (2017)

  20. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  21. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  23. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  24. Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017)

    Article  Google Scholar 

  25. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  26. Lee, S.g., Hwang, U., Min, S., Yoon, S.: A seqgan for polyphonic music generation. arXiv preprint arXiv:1710.11418 (2017)

  27. lex, M.L.T.: Overview of the national laws on electronic health records in the eu member states and their interaction with the provision of cross-border ehealth services: Final report and recommendations (contract 2013 63 02), viewed 18th March 2018 (2014)

    Google Scholar 

  28. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: Challenges, methods, and future directions. arXiv preprint arXiv:1908.07873 (2019)

  29. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  30. Lin, K., Li, D., He, X., Zhang, Z., Sun, M.T.: Adversarial ranking for language generation. In: Advances in Neural Information Processing Systems, pp. 3155–3165 (2017)

    Google Scholar 

  31. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In: Advances in Neural Information Processing Systems, pp. 6467–6476 (2017)

    Google Scholar 

  32. Mardani, M., et al.: Deep generative adversarial networks for compressed sensing automates MRI. arXiv preprint arXiv:1706.00051 (2017)

  33. Mason, L., Baxter, J., Bartlett, P.L., Frean, M.R.: Boosting algorithms as gradient descent. In: Advances in Neural Information Processing Systems, pp. 512–518 (2000)

    Google Scholar 

  34. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Psychology of Learning and Motivation, vol. 24, pp. 109–165. Elsevier (1989)

    Google Scholar 

  35. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  36. Mercuri, R.T.: The hipaa-potamus in health care data security. Commun. ACM 47(7), 25–28 (2004)

    Article  Google Scholar 

  37. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  38. Mirza, M., Osindero, S.: Conditional Generative Adversarial Nets (2014)

    Google Scholar 

  39. Qu, H., Yan, Z., Riedlinger, G.M., De, S., Metaxas, D.N.: Improving nuclei/gland instance segmentation in histopathology images by full resolution neural network and spatial constrained loss. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 378–386. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_42

    Chapter  Google Scholar 

  40. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  41. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation, pp. 234–241 (2015)

    Google Scholar 

  42. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)

  43. Seff, A., Beatson, A., Suo, D., Liu, H.: Continual learning in generative adversarial nets. arXiv preprint arXiv:1705.08395 (2017)

  44. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  45. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: MoCoGAN: decomposing motion and content for video generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1526–1535 (2018)

    Google Scholar 

  46. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: Advances in Neural Information Processing Systems, pp. 613–621 (2016)

    Google Scholar 

  47. Wang, C., Xu, C., Wang, C., Tao, D.: Perceptual adversarial networks for image-to-image transformation. IEEE Trans. Image Process. 27(8), 4066–4079 (2018)

    Article  MathSciNet  Google Scholar 

  48. Wu, C., Herranz, L., Liu, X., van de Weijer, J., Raducanu, B., et al.: Memory replay gans: learning to generate new categories without forgetting. In: Advances In Neural Information Processing Systems, pp. 5962–5972 (2018)

    Google Scholar 

  49. Yang, D., et al.: Automatic vertebra labeling in large-scale 3D CT using deep image-to-image network with message passing and sparsity regularization. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 633–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_50

    Chapter  Google Scholar 

  50. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

  51. Zhai, M., Chen, L., Tung, F., He, J., Nawhal, M., Mori, G.: Lifelong gan: continual learning for conditional image generation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2759–2768 (2019)

    Google Scholar 

  52. Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., Metaxas, D.N.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5907–5915 (2017)

    Google Scholar 

  53. Zhang, Y., Qu, H., Chen, C., Metaxas, D.: Taming the noisy gradient: train deep neural networks with small batch sizes. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 4348–4354. AAAI Press (2019)

    Google Scholar 

  54. Zhang, Y., Qu, H., Metaxas, D.N., Chen, C.: Local regularizer improves generalization. In: AAAI, pp. 6861–6868 (2020)

    Google Scholar 

  55. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. In: Advances in Neural Information Processing Systems, pp. 14747–14756 (2019)

    Google Scholar 

Download references

Acknowledgement

We thank anonymous reviewers for helpful comments. The research of Chao Chen is partially supported by NSF IIS-1855759, CCF-1855760 and IIS-1909038. The research of Dimitris Metaxas is partially supported by NSF CCF-1733843, IIS-1763523, CNS-1747778, and IIS-1703883.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Qu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 259 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qu, H., Zhang, Y., Chang, Q., Yan, Z., Chen, C., Metaxas, D. (2020). Learn Distributed GAN with Temporary Discriminators. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12372. Springer, Cham. https://doi.org/10.1007/978-3-030-58583-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58583-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58582-2

  • Online ISBN: 978-3-030-58583-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics