Skip to main content

Gelfand Triples for the Kohn–Nirenberg Quantization on Homogeneous Lie Groups

  • Conference paper
  • First Online:
Advances in Harmonic Analysis and Partial Differential Equations

Part of the book series: Trends in Mathematics ((TM))

  • 430 Accesses

Abstract

We study the action of the group Fourier transform and of the Kohn–Nirenberg quantization (Fischer and Ruzhansky, Quantization on Nilpotent Lie Groups. Birkäuser, Boston, 2016) on certain Gelfand triples for homogeneous Lie groups G. Even for the Heisenberg group \(G=\mathbb H\) there seems to be no simple intrinsic characterization for the Fourier image of the Schwartz space of rapidly decreasing smooth functions \(\mathcal S(G)\), see (Geller, J Funct Anal 36(2), 205–254, 1980; Astengo et al., Stud Math 214, 201–222, 2013). But we may derive a simple characterization of the Fourier image for a certain subspace \(\mathcal S_*(G)\) of \(\mathcal S(G)\). We restrict our considerations to the case, where G admits irreducible unitary representations, that are square integrable modulo the center Z(G) of G, and where \(\dim Z(G)=1\). This enables us to use an especially applicable characterization of these irreducible unitary representations that are square integrable modulo Z(G) (Moore and Wolf, Trans Am Math Soc 185, 445–445, 1973; Măntoiu and Ruzhansky, J Geom Anal 29(2), 2823–2861, 2018; Gröchenig and Rottensteiner, J Funct Anal 275(12), 3338–3379, 2018). Also, Pedersen’s machinery (Pedersen, Invent. Math. 118, 1–36, 1994) combines very well with this setting (Măntoiu and Ruzhansky, J Geom Anal 29(2), 2823–2861, 2018). Starting with \(\mathcal S_*(G)\), we are able to construct distributions and Gelfand triples around L 2(G, μ) and its Fourier image \(L^2(\widehat G,\widehat \mu )\), such that the Fourier transform becomes a Gelfand triple isomorphism. In this context we show for the Fourier side, that multiplication of distributions with a large class of vector valued smooth functions is possible and well behaved. Furthermore, we rewrite the Kohn–Nirenberg quantization as an isomorphism for our new Gelfand triples and prove a formula for the Kohn–Nirenberg symbol, which is known from the compact group case (Ruzhansky and Turunen, Pseudo-Differential Operators and Symmetries. Birkäuser, Boston, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geller, D.: Fourier analysis on the Heisenberg group. I. Schwartz space. J. Funct. Anal. 36(2), 205–254 (1980)

    MathSciNet  MATH  Google Scholar 

  2. Astengo, F., Di Blasio, B., Ricci, F.: Fourier transform of Schwartz functions on the Heisenberg group. Stud. Math. 214, 201–222 (2013)

    Article  MathSciNet  Google Scholar 

  3. Măntoiu, M., Ruzhansky, M.: Quantizations on nilpotent lie groups and algebras having flat coadjoint orbits. J. Geom. Anal. 29(2), 2823–2861 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Gröchenig, K., Rottensteiner, D.: Orthonormal bases in the orbit of square-integrable representations of nilpotent Lie groups. J. Funct. Anal. 275(12), 3338–3379 (2018)

    Article  MathSciNet  Google Scholar 

  5. Bargetz, C., Ortner, N.: Characterization of L. Schwartz’ convolutor and multiplier spaces \(\mathcal O _{C}^{\prime }\) and \(\mathcal O _{M}\) by the short-time Fourier transform. RACSAM 108(2), 833–847 (2014)

    Google Scholar 

  6. Pedersen, N.V.: Geometric quantization and the universal enveloping algebra of a nilpotent Lie group. Trans. Am. Math. Soc. 315(2), 511–563 (1989)

    Article  MathSciNet  Google Scholar 

  7. Fischer, V., Ruzhansky M.: Quantization on Nilpotent Lie Groups. Birkäuser, Boston (2016)

    Book  Google Scholar 

  8. Ruzhansky, M., Turunen, V.: Pseudo-Differential Operators and Symmetries. Birkäuser, Boston (2010)

    Book  Google Scholar 

  9. Corwin, L., Greenleaf, F.P.: Representations of Nilpotent Lie Groups and Their Applications. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  10. Treves, F.: Topological Vectors Spaces, Distributions and Kernels. Academic Press, San Diego (1967)

    MATH  Google Scholar 

  11. Schaefer, H.H.: Topological Vector Spaces, Springer, New York (1971)

    Book  Google Scholar 

  12. Schwartz, L.: Théorie des distributions à valeurs vectorielles. II. Ann. Inst. Fourier 8, 1–209 (1958)

    Article  Google Scholar 

  13. Kaballo, W.: Aufbaukurs Funktionalanalysis und Operatortheorie. Springer, Berlin (2014)

    Book  Google Scholar 

  14. Grothendieck, A.: Produit tensoriels topologiques et espace nucléaire. Memoirs of the American Mathematical Society, vol. 16. American Mathematical Society, Providence (1955)

    Google Scholar 

  15. Bargetz, C: Explicit representations of spaces of smooth functions and distributions. J. Math. Anal. Appl. 424(2), 1491–1505 (2015)

    Article  MathSciNet  Google Scholar 

  16. Gel’fand, I.M., Vilenkin, N.Y.: Generalized Functions, vol. 4, Academic Press, New York (1964)

    MATH  Google Scholar 

  17. Schwartz, L.: Théorie des Distributions. Hermann, Paris (1978)

    MATH  Google Scholar 

  18. Grafakos, L.: Modern Fourier Analysis. Springer, New York (2009)

    Book  Google Scholar 

  19. Komatsu, H.: Projective and injective limits of weakly compact sequences of locally convex spaces. J. Math. Soc. Jpn. 19(3), 366–383 (1967)

    Article  MathSciNet  Google Scholar 

  20. Pedersen, N.V.: Matrix coefficients and a Weyl correspondence for nilpotent Lie groups. Invent. Math. 118, 1–36 (1994)

    Article  MathSciNet  Google Scholar 

  21. Cartier, P.: Vecteurs différentiables dans les représentations unitaires des groupes de Lie. Sémin. Bourbaki, Exp. No. 454, 20–34 (1976)

    Google Scholar 

  22. Moore, C., Wolf, J.: Square integrable representations of nilpotent groups. Trans. Am. Math. Soc. 185, 445–445 (1973)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Jonas Brinker was supported by ISAAC as a young scientist for his participation at the 12th ISAAC Congress in Aveiro.

We thank David Rottensteiner for discussing the possibility of our approach in this setting (homogeneous Lie groups with one-dimensional center and flat orbits) and we thank Christian Bargetz for a very helpful discussion and for pointing out the relevant literature to the multiplication of vector valued distributions with vector valued functions.

We especially thank the reviewer for many helpful comments and suggestions, which allowed to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Brinker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brinker, J., Wirth, J. (2020). Gelfand Triples for the Kohn–Nirenberg Quantization on Homogeneous Lie Groups. In: Georgiev, V., Ozawa, T., Ruzhansky, M., Wirth, J. (eds) Advances in Harmonic Analysis and Partial Differential Equations. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-58215-9_3

Download citation

Publish with us

Policies and ethics