Skip to main content

Biological Determinants of Crop Nitrogen Use Efficiency and Biotechnological Avenues for Improvement

  • Chapter
  • First Online:
Just Enough Nitrogen

Abstract

Crop nitrogen use efficiency (NUE) is crucial for sustainable food security as well as for a sustainable environment. It can be improved in the short term through improved fertilizer formulations and cropping practices under integrated nutrient management, but the inherent capacity of the plant to take up, retain and use the available nitrogen (N) has to be tackled biologically. The last decade has witnessed several major advances in our understanding on the biological determinants of N-response and N-use efficiency, which are opening up biotechnological opportunities for improvement in the medium to long term. This chapter highlights the various biological determinants including the uptake and assimilation of external N, remobilization of internal N, efflux or loss of N from plants. The emerging opportunities for NUE enhancement span a vast array of approaches including germplasm diversity, root architecture, molecular markers, phenomics, genomics and functional genomics, metabolomics and micro-Ribonucleic Acids (miRNAs). They are amenable to both transgenic, as well as non-transgenic selection/breeding options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albinsky, D., Kusano, M., Higuchi, M., Hayashi, N., Kobayashi, M., Fukushima, A., et al. (2010). Metabolomic screening applied to rice FOX Arabidopsis lines leads to the identification of a gene-changing nitrogen metabolism. Molecular Plant, 3(1), 125–142.

    Article  CAS  Google Scholar 

  • Amiour, N., Imbaud, S., Clément, G., Agier, N., Zivy, M., Valot, B., et al. (2012). The use of metabolomics integrated with transcriptomic and proteomic studies for identifying key steps involved in the control of nitrogen metabolism in crops such as maize. Journal of Experimental Botany, 63(14), 5017–5033.

    Article  CAS  Google Scholar 

  • Andrews, M., & Lea, P. J. (2013). Our nitrogen ‘footprint’: The need for increased crop nitrogen use efficiency. Annals of Applied Biology, 163(2), 165–169.

    Article  CAS  Google Scholar 

  • Bi, Y. M., Kant, S., Clark, J., Gidda, S., Ming, F., Xu, J., et al. (2009). Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling. Plant, Cell & Environment, 32(12), 1749–1760.

    Article  CAS  Google Scholar 

  • Bordes, J., Ravel, C., Jaubertie, J., Duperrier, B., Gardet, O., Heumez, E., et al. (2013). Genomic regions associated with the nitrogen limitation response revealed in a global wheat core collection. Theoretical and Applied Genetics, 126(3), 805–822.

    Article  CAS  Google Scholar 

  • Bucksch, A., Burridge, J., York, L. M., Das, A., Nord, E., Weitz, J. S., & Lynch, J. P. (2014). Image-based high-throughput field phenotyping of crop roots. Plant Physiology, 166(2), 470–486.

    Google Scholar 

  • Cameron, K., Di, H., & Moir, J. (2013). Nitrogen losses from the soil/plant system: A review. Annals of Applied Biology, 162(2), 145–173.

    Article  CAS  Google Scholar 

  • Chakraborty, N., & Raghuram, N. (2011). Nitrate sensing and signaling in genomewide plant N response. In V. Jain & P. Anandakumar (Eds.), Nitrogen use efficiency in plants (pp. 45–62). New Delhi: New India Publishing Agency.

    Google Scholar 

  • Chardon, F., Barthélémy, J., Daniel-Vedele, F., & Masclaux-Daubresse, C. (2010). Natural variation of nitrate uptake and nitrogen use efficiency in Arabidopsis thaliana cultivated with limiting and ample nitrogen supply. Journal of Experimental Botany, 61(9), 2293–2302.

    Article  CAS  Google Scholar 

  • Coque, M., & Gallais, A. (2006). Genomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize. Theoretical and Applied Genetics, 112(7), 1205–1220.

    Article  CAS  Google Scholar 

  • De Dorlodot, S., Forster, B., Pagès, L., Price, A., Tuberosa, R., & Draye, X. (2007). Root system architecture: Opportunities and constraints for genetic improvement of crops. Trends in Plant Science, 12(10), 474–481.

    Article  CAS  Google Scholar 

  • Fischer, J. J., Beatty, P. H., Good, A. G., & Muench, D. G. (2013). Manipulation of microRNA expression to improve nitrogen use efficiency. Plant Science, 210, 70–81.

    Article  CAS  Google Scholar 

  • Forde, B. G. (2014). Nitrogen signalling pathways shaping root system architecture: An update. Current Opinion in Plant Biology, 21, 30–36.

    Article  CAS  Google Scholar 

  • Fukushima, A., & Kusano, M. (2014). A network perspective on nitrogen metabolism from model to crop plants using integrated ‘omics’ approaches. Journal of Experimental Botany, 65(19), 5619–5630.

    Article  CAS  Google Scholar 

  • Furbank, R. T., & Tester, M. (2011). Phenomics–technologies to relieve the phenotyping bottleneck. Trends in Plant Science, 16(12), 635–644.

    Article  CAS  Google Scholar 

  • Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., et al. (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320(5878), 889–892.

    Article  CAS  Google Scholar 

  • Giehl, R. F., Gruber, B. D., & von Wirén, N. (2014). It’s time to make changes: Modulation of root system architecture by nutrient signals. Journal of Experimental Botany, 65(3), 769–778.

    Article  CAS  Google Scholar 

  • Good, A. G., & Beatty, P. H. (2011). Fertilizing nature: A tragedy of excess in the commons. PLoS Biology, 9(8), e1001124. https://doi.org/10.1371/journal.pbio.1001124

    Article  CAS  Google Scholar 

  • Good, G., Johnson, S. J., De Pauw, M., Carroll, R. T., Savidov, N., Vidmar, J., Lu, Z., Taylor, G., & Stroeher, V. (2007). Engineering nitrogen use efficiency with alanine aminotransferase. Canadian Journal of Botany, 85(3), 252–262.

    Google Scholar 

  • Goodall, A. J., Kumar, P., & Tobin, A. K. (2013). Identification and expression analyses of cytosolic glutamine synthetase genes in barley (Hordeum vulgare L.). Plant and Cell Physiology, 54(4), 492–505.

    Google Scholar 

  • Hakeem, K., Chandna, R., Ahmad, A., Qureshi, M. I., & Iqbal, M. (2012). Proteomic analysis for low and high nitrogen-responsive proteins in the leaves of rice genotypes grown at three nitrogen levels. Applied Biochemistry and Biotechnology, 168(4), 834–850.

    Article  CAS  Google Scholar 

  • Hakeem, K., Mir, B., Qureshi, M. I., Ahmad, A., & Iqbal, M. (2013). Physiological studies and proteomic analysis for differentially expressed proteins and their possible role in the root of N-efficient rice (Oryza sativa L.). Molecular Breeding, 32(4), 785–798.

    Google Scholar 

  • Hawkesford, M. J. (2012). Improving nutrient use efficiency in crops. In eLS. Chichester: Wiley. https://doi.org/10.1002/9780470015902.a0023734.

  • Hu, H. C., Wang, Y. Y., & Tsay, Y. F. (2009). AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. The Plant Journal, 57(2), 264–278.

    Article  CAS  Google Scholar 

  • Humbert, S., Subedi, S., Cohn, J., Zeng, B., Bi, Y.-M., Chen, X., et al. (2013). Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses. BMC Genomics, 14, 3. https://doi.org/10.1186/1471-2164-14-3

    Article  CAS  Google Scholar 

  • Igarashi, D., Ishizaki, T., Totsuka, K., & Ohsumi, C. (2009). ASN2 is a key enzyme in asparagine biosynthesis under ammonium sufficient conditions. Plant Biotechnology, 26(1), 153–159.

    Article  CAS  Google Scholar 

  • Jeuffroy, M.-H., Casadebaig, P., Debaeke, P., Loyce, C., & Meynard, J.-M. (2014). Agronomic model uses to predict cultivar performance in various environments and cropping systems. A Review. Agronomy for Sustainable Development, 34(1), 121–137.

    Article  Google Scholar 

  • Kamiji, Y., Pang, J., Milroy, S. P., & Palta, J. A. (2014). Shoot biomass in wheat is the driver for nitrogen uptake under low nitrogen supply, but not under high nitrogen supply. Field Crops Research, 165, 92–98.

    Article  Google Scholar 

  • Kindu, G., Tang, J., Yin, X., & Struik, P. (2014). Quantitative trait locus analysis of nitrogen use efficiency in barley (Hordeum vulgare L.). Euphytica, 199(1–2), 207–221.

    Google Scholar 

  • Kumagai, E., Araki, T., Hamaoka, N., & Ueno, O. (2011). Ammonia emission from rice leaves in relation to photorespiration and genotypic differences in glutamine synthetase activity. Annals of Botany, 108(7), 1381–1386.

    Article  CAS  Google Scholar 

  • Kusano, M., Fukushima, A., Redestig, H., & Saito, K. (2011). Metabolomic approaches toward understanding nitrogen metabolism in plants. Journal of Experimental Botany, 62(4), 1439–1453.

    Article  CAS  Google Scholar 

  • Li, Q., Li, B.-H., Kronzucker, H. J., & Shi, W.-M. (2010). Root growth inhibition by NH4+ in Arabidopsis is mediated by the root tip and is linked to NH4+ efflux and GMPase activity. Plant, Cell & Environment, 33(9), 1529–1542.

    CAS  Google Scholar 

  • Li, X.-M., Chen, X.-M., Xiao, Y.-G., Xia, X.-C., Wang, D.-S., He, Z.-H., & Wang, H.-J. (2014). Identification of QTLs for seedling vigor in winter wheat. Euphytica, 198(2), 199–209.

    Article  CAS  Google Scholar 

  • Liang, C., Tian, J., & Liao, H. (2013). Proteomics dissection of plant responses to mineral nutrient deficiency. Proteomics, 13(3–4), 624–636.

    Article  CAS  Google Scholar 

  • Liao, C., Peng, Y., Ma, W., Liu, R., Li, C., & Li, X. (2012). Proteomic analysis revealed nitrogen-mediated metabolic, developmental, and hormonal regulation of maize (Zea mays L.) ear growth. Journal of Experimental Botany, 63(14), 5275–5288.

    Google Scholar 

  • Marchive, C., Roudier, F., Castaings, L., Bréhaut, V., Blondet, E., Colot, V., et al. (2013). Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nature Communications, 4, 1713. https://doi.org/10.1038/ncomms2650

    Article  CAS  Google Scholar 

  • Masclaux-Daubresse, C., Reisdorf-Cren, M., Pageau, K., Lelandais, M., Grandjean, O., Kronenberger, J., et al. (2006). Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. Plant Physiology, 140(2), 444–456.

    Article  CAS  Google Scholar 

  • McAllister, C. H., Beatty, P. H., & Good, A. G. (2012). Engineering nitrogen use efficient crop plants: The current status. Plant Biotechnology Journal, 10(9), 1011–1025.

    Article  CAS  Google Scholar 

  • McDougall, P. (2011). The cost and time involved in the discovery, development and authorisation of a new plant biotechnology derived trait. A consultancy study for Crop Life International. Midlothian, UK: Phillips McDougall.

    Google Scholar 

  • Møller, A. L. B., Pedas, P. A. I., Andersen, B., Svensson, B., Schjoerring, J. K., & Finnie, C. (2011). Responses of barley root and shoot proteomes to long-term nitrogen deficiency, short-term nitrogen starvation and ammonium. Plant, Cell & Environment, 34(12), 2024–2037.

    Article  CAS  Google Scholar 

  • Okumoto, S., & Pilot, G. (2011). Amino acid export in plants: A missing link in nitrogen cycling. Molecular Plant, 4(3), 453–463.

    Article  CAS  Google Scholar 

  • Orman-Ligeza, B., Civava, R., de Dorlodot, S., & Draye, X. (2014). Root system architecture. In A. Morte & A. Varma (Eds.), Root engineering (pp. 39–56). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • Parry, M. A., & Hawkesford, M. J. (2012). An integrated approach to crop genetic improvement. Journal of Integrative Plant Biology, 54(4), 250–259.

    Article  Google Scholar 

  • Pathak, R., Ahmad, A., Lochab, S., & Raghuram, N. (2008). Molecular physiology of plant nitrogen use efficiency and biotechnological options for its enhancement. Current Science, 94(11), 1394–1403.

    CAS  Google Scholar 

  • Pathak, R., Lochab, S., & Raghuram, N. (2011). Improving nitrogen use efficiency. In M. Moo-Young (Ed.) Comprehensive biotechnology. Volume 4: Agricultural and related biotechnologies (pp. 209–218). Oxford: Elsevier.

    Google Scholar 

  • Patterson, K., Cakmak, T., Cooper, A., Lager, I., Rasmusson, A. G., & Escobar, M. A. (2010). Distinct signalling pathways and transcriptome response signatures differentiate ammonium-and nitrate-supplied plants. Plant, Cell & Environment, 33(9), 1486–1501.

    CAS  Google Scholar 

  • Pavlík, M., Pavlíková, D., & Vašíčková, S. (2010). Infrared spectroscopy-based metabolomic analysis of maize growing under different nitrogen nutrition. Plant, Soil and Environment, 56(11), 533–540.

    Article  Google Scholar 

  • Poiré, R., Chochois, V., Sirault, X. R., Vogel, J. P., Watt, M., & Furbank, R. T. (2014). Digital imaging approaches for phenotyping whole plant nitrogen and phosphorus response in Brachypodium distachyon. Journal of Integrative Plant Biology, 56(8), 781–796.

    Article  CAS  Google Scholar 

  • Privalle, L. S., Chen, J., Clapper, G., Hunst, P., Spiegelhalter, F., & Zhong, C. X. (2012). Development of an agricultural biotechnology crop product: Testing from discovery to commercialization. Journal of Agricultural and Food Chemistry, 60(41), 10179–10187.

    Article  CAS  Google Scholar 

  • Quraishi, U. M., Abrouk, M., Murat, F., Pont, C., Foucrier, S., Desmaizieres, G., et al. (2011). Cross-genome map based dissection of a nitrogen use efficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution. The Plant Journal, 65(5), 745–756.

    Article  CAS  Google Scholar 

  • Rachmilevitch, S., Cousins, A. B., & Bloom, A. J. (2004). Nitrate assimilation in plant shoots depends on photorespiration. Proceedings of the National Academy of Sciences of the United States of America, 101(31), 11506–11510.

    Article  CAS  Google Scholar 

  • Rothstein, S. J., Bi, Y.-M., Coneva, V., Han, M., & Good, A. (2014). The challenges of commercializing second-generation transgenic crop traits necessitate the development of international public sector research infrastructure. Journal of Experimental Botany, 65(19), 5673–5682.

    Article  CAS  Google Scholar 

  • Ruzicka, D. R., Barrios-Masias, F. H., Hausmann, N. T., Jackson, L. E., & Schachtman, D. P. (2010). Tomato root transcriptome response to a nitrogen-enriched soil patch. BMC Plant Biology, 10(1), 75.

    Article  CAS  Google Scholar 

  • Sato, S., & Yanagisawa, S. (2014). Characterization of metabolic states of Arabidopsis thaliana under diverse carbon and nitrogen nutrient conditions via targeted metabolomic analysis. Plant and Cell Physiology, 55(2), 306–319.

    Article  CAS  Google Scholar 

  • Simons, M., Saha, R., Guillard, L., Clément, G., Armengaud, P., Cañas, R., Maranas, C. D., Lea, P. J., & Hirel, B. (2014). Nitrogen-use efficiency in maize (Zea mays L.): from ‘omics’ studies to metabolic modelling. Journal of Experimental Botany, 65(19), 5657–5671.

    Google Scholar 

  • Smith, S., & De Smet, I. (2012). Root system architecture: Insights from Arabidopsis and cereal crops. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1595), 1441–1452.

    Article  CAS  Google Scholar 

  • Sorgona, A., Lupini, A., Mercati, F., Di Dio, L., Sunseri, F., & Abenavoli, M. R. (2011). Nitrate uptake along the maize primary root: An integrated physiological and molecular approach. Plant, Cell & Environment, 34(7), 1127–1140.

    Article  CAS  Google Scholar 

  • Sun, J.-J., Guo, Y., Zhang, G.-Z., Gao, M.-G., Zhang, G.-H., Kong, F.-M., et al. (2013). QTL mapping for seedling traits under different nitrogen forms in wheat. Euphytica, 191(3), 317–331.

    Article  Google Scholar 

  • Sutton, M. A., Bleeker, A., Howard, C., Bekunda, M., Grizzetti, B., de Vries, W., van Grinsven, H. J. M., Abrol, Y. P., Adhya, T. K., Billen, G., Davidson, E. A., Datta, A., Diaz, R., Erisman, J. W., Liu, X. J., Oenema, O., Palm, C., Raghuram, N., Reis, S., Scholz, R. W., Sims, T., Westhoek, H., & Zhang, F. S. (2013). Our Nutrient World: The challenge to produce more food and energy with less pollution. Global overview of Nutrient Management. Edinburgh: Centre for Ecology and Hydrology (CEH) on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative.

    Google Scholar 

  • Varshney, R. K., Bansal, K. C., Aggarwal, P. K., Datta, S. K., & Craufurd, P. Q. (2011). Agricultural biotechnology for crop improvement in a variable climate: Hope or hype? Trends in Plant Science, 16(7), 363–371.

    Article  CAS  Google Scholar 

  • Villordon, A. Q., Ginzberg, I., & Firon, N. (2014). Root architecture and root and tuber crop productivity. Trends in Plant Science, 19(7), 419–425.

    Article  CAS  Google Scholar 

  • Vitousek, P., Cassman, K., Cleveland, C., Crews, T., Field, C., Grimm, N., et al. (2002). Towards an ecological understanding of biological nitrogen fixation. In E. Boyer & R. Howarth (Eds.), The nitrogen cycle at regional to global scales (pp. 1–45). Netherlands: Springer.

    Google Scholar 

  • Wang, R., Guegler, K., LaBrie, S. T., & Crawford, N. M. (2000). Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. The Plant Cell Online, 12(8), 1491–1509.

    Article  CAS  Google Scholar 

  • Wei, H., Yordanov, Y. S., Georgieva, T., Li, X., & Busov, V. (2013). Nitrogen deprivation promotes Populus root growth through global transcriptome reprogramming and activation of hierarchical genetic networks. New Phytologist, 200(2), 483–497.

    Article  CAS  Google Scholar 

  • Wu, W., & Cheng, S. (2014). Root genetic research, an opportunity and challenge to rice improvement. Field Crops Research, 165, 111–124.

    Article  Google Scholar 

  • Xu, G., Fan, X., & Miller, A. J. (2012). Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 63, 153–182.

    Article  CAS  Google Scholar 

  • Zeng, H., Wang, G., Hu, X., Wang, H., Du, L., & Zhu, Y. (2014). Role of microRNAs in plant responses to nutrient stress. Plant and Soil, 374(1–2), 1005–1021.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

VBS and JAP are thankful to ICAR and CSIR (India) for their fellowships. This work was supported in part by grants to NR from ICAR under NICRA, through CRIDA, Hyderabad, India and the Indian Department of Biotechnology under the NEWS India-UK Virtual Joint Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Raghuram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinha, V.B., Jangam, A.P., Raghuram, N. (2020). Biological Determinants of Crop Nitrogen Use Efficiency and Biotechnological Avenues for Improvement. In: Sutton, M.A., et al. Just Enough Nitrogen. Springer, Cham. https://doi.org/10.1007/978-3-030-58065-0_11

Download citation

Publish with us

Policies and ethics