Skip to main content

The Role of P-Glycoprotein at the Blood–Brain Barrier in Neurological and Psychiatric Disease

  • Chapter
  • First Online:
PET and SPECT in Psychiatry

Abstract

P-glycoprotein, also known as ABCB1, is an efflux transporter located at endothelial cells of the blood–brain barrier and plays an important role in protecting the brain parenchyma from various neurotoxic substances. These substances are transported across the blood–brain barrier and are called ‘P-gp substrates’. A broad range of P-gp substrates with a great degree of structural diversity exists. In this chapter we discuss the current state of knowledge about this interesting transporter with a special focus on the influence of P-gp on the tissue distribution of pharmaceuticals and drug resistance and the role of changes in P-gp function in psychiatric and neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC transporters:

ATP-binding cassette transporters

AD:

Alzheimer’s disease

ATP:

Adenosine triphosphate

Aβ:

Amyloid-beta

BBB:

Blood–brain barrier

BCRP:

Breast cancer resistance protein

CBF:

Cerebral blood flow

CNS:

Central nervous system

DDI:

Drug–drug interactions

GIT:

Gastrointestinal tract

JAM:

Junctional adhesion molecules

LRP1:

Low-density lipoprotein receptor-related protein-1

MRI:

Magnetic resonance imaging

MRP:

Multidrug resistance-associated protein

MSD:

Membrane-spanning domain

NBD:

Nucleotide-binding domain

NHP:

Non-human primate

PET:

Positron emission tomography

P-gp:

P-glycoprotein (permeability glycoprotein)

SPECT:

Single photon emission computed tomography

SUV:

Standardized uptake value

TEER:

Transepithelial/endothelial electrical resistance

V T :

Volume of distribution

References

  • Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25

    Article  CAS  PubMed  Google Scholar 

  • Aller SG, Yu J, Ward A et al (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alzheimer A (1906) Über einen eigenartigen schweren Erkrankungsprozeß der Hirnrinde. Neurol Zentralblatt 23:1129–1136

    Google Scholar 

  • Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39:361

    Article  CAS  PubMed  Google Scholar 

  • Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM (2003) P-glycoprotein: from genomics to mechanism. Oncogene 22:7468–7485

    Article  CAS  PubMed  Google Scholar 

  • Aouali N, Eddabra L, Macadré J, Morjani H (2005) Immunosuppressors and reversion of multidrug-resistance. Crit Rev Oncol Hematol 56:61–70

    Article  PubMed  Google Scholar 

  • Aquilante CL, Letrent SP, Pollack GM, Brouwer KLR (1999) Increased brain P-glycoprotein in morphine tolerant rats. Life Sci 66:PL47

    Article  Google Scholar 

  • Armulik A, Genové G, Mäe M et al (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561

    Article  CAS  PubMed  Google Scholar 

  • Armulik A, Genové G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215

    Article  CAS  PubMed  Google Scholar 

  • van Assema DM, Lubberink M, Boellaard R et al (2012) Reproducibility of quantitative (R)-[11C]verapamil studies. EJNMMI Res 2:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Auvity S, Caillé F, Marie S et al (2018) P-glycoprotein (ABCB1) inhibits the influx and increases the efflux of 11C-metoclopramide across the blood-brain barrier: a PET study on nonhuman primates. J Nucl Med 59:1609–1615

    Article  CAS  PubMed  Google Scholar 

  • Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1

    Article  CAS  PubMed  Google Scholar 

  • Bankstahl JP, Bankstahl M, Römermann K et al (2013) Tariquidar and elacridar are dose-dependently transported by P-glycoprotein and Bcrp at the blood-brain barrier: a small-animal positron emission tomography and in vitro study. Drug Metab Dispos 41:754–762

    Article  CAS  PubMed  Google Scholar 

  • Bartels AL, de Klerk O, Kortekaas R, de Vries JL, Leenders K (2010) 11C-verapamil to assess P-gp function in human brain during aging, depression and neurodegenerative disease. Curr Top Med Chem 10:1775–1784

    Article  CAS  PubMed  Google Scholar 

  • Bauer F, Kuntner C, Bankstahl JP et al (2010) Synthesis and in vivo evaluation of [11C]tariquidar, a positron emission tomography radiotracer based on a third-generation P-glycoprotein inhibitor. Bioorganic Med Chem 18:5489–5497

    Article  CAS  Google Scholar 

  • Bauer M, Karch R, Zeitlinger M et al (2013) Interaction of 11C-tariquidar and 11C-elacridar with P-glycoprotein and breast cancer resistance protein at the human blood-brain barrier. J Nucl Med 54:1181–1187

    Article  CAS  PubMed  Google Scholar 

  • Bauer M, Karch R, Zeitlinger M et al (2015) Approaching complete inhibition of P-glycoprotein at the human blood-brain barrier: an (R)-[11 C]verapamil PET study. J Cereb Blood Flow Metab 35:743–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein HG, Hildebrandt J, Dobrowolny H, Steiner J, Bogerts B, Pahnke J (2016) Morphometric analysis of the cerebral expression of ATP-binding cassette transporter protein ABCB1 in chronic schizophrenia: circumscribed deficits in the habenula. Schizophr Res 177:52–58

    Article  PubMed  Google Scholar 

  • Bigott HM, Prior JL, Piwnica-Worms DR, Welch MJ (2005) Imaging multidrug resistance P-glycoprotein transport function using microPET with technetium-94m-sestamibi. Mol Imaging 4:30–39

    Article  PubMed  Google Scholar 

  • Binkhathlan Z, Lavasanifar A (2013) P-glycoprotein inhibition as a therapeutic approach for overcoming multidrug resistance in cancer: current status and future perspectives. Curr Cancer Drug Targets 13:326–346

    Article  CAS  PubMed  Google Scholar 

  • Breitenstein B, Brückl TM, Ising M, Müller-Myhsok B, Holsboer F, Czamara D (2015) ABCB1 gene variants and antidepressant treatment outcome: a meta-analysis. Am J Med Genet Part B Neuropsychiatr Genet 168:274

    Article  CAS  Google Scholar 

  • Brenn A, Grube M, Jedlitschky G et al (2014) St. John’s Wort reduces beta-amyloid accumulation in a double transgenic Alzheimer’s disease mouse model-role of P-glycoprotein. Brain Pathol 24:18–24

    Article  PubMed  Google Scholar 

  • Brioschi S, Peng V, Colonna M (2019) Fifty shades of microglia. Trends Neurosci 42:440–443

    Article  CAS  PubMed  Google Scholar 

  • Cabezas R, Avila M, Gonzalez J et al (2014) Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front Cell Neurosci 8:211

    Article  PubMed  PubMed Central  Google Scholar 

  • Callaghan R, Riordan JR (1993) Synthetic and natural opiates interact with P-glycoprotein in multidrug-resistant cells. J Biol Chem 268:16,059–16,064

    Article  CAS  Google Scholar 

  • Carter DA, Desmarais E, Bellis M et al (1992) More missense in amyloid gene. Nat Genet 2:255–256

    Article  CAS  PubMed  Google Scholar 

  • Chartier-Harlin MC, Crawford F, Houlden H et al (1991) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature 353:844–846

    Article  CAS  PubMed  Google Scholar 

  • Church RM, Miller MC, Freestone D et al (2014) Amyloid-beta accumulation, neurogenesis, behavior, and the age of rats. Behav Neurosci 128:523

    Article  PubMed  Google Scholar 

  • Cole SPC (2014) Multidrug resistance protein 1 (mrp1, abcc1), a “multitasking” atp-binding cassette (abc,) transporter. J Biol Chem 289:30,880–30,888

    Article  CAS  Google Scholar 

  • Cole SP, Bhardwaj G, Gerlach JH et al (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258:1650–1654

    Article  CAS  PubMed  Google Scholar 

  • Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10:735–742

    Article  CAS  PubMed  Google Scholar 

  • Damont A, Goutal S, Auvity S et al (2016) Imaging the impact of cyclosporin a and dipyridamole on P-glycoprotein (ABCB1) function at the blood-brain barrier: a [ 11 C]-N-desmethyl-loperamide PET study in nonhuman primates. Eur J Pharm Sci 91:98–104

    Article  CAS  PubMed  Google Scholar 

  • Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol 7:a020412

    Article  PubMed  PubMed Central  Google Scholar 

  • Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468:562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Kloet ER, Vreugdenhil E, Oitzl MS, Joëls M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19:269–301

    PubMed  Google Scholar 

  • Deane R, Du Yan S, Submamaryan RK et al (2003) RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9:907–913

    Article  CAS  PubMed  Google Scholar 

  • Dinis-Oliveira RJ, Duarte JA, Remião F, Sánchez-Navarro A, Bastos ML, Carvalho F (2006) Single high dose dexamethasone treatment decreases the pathological score and increases the survival rate of paraquat-intoxicated rats. Toxicology 227:73–85

    Article  CAS  PubMed  Google Scholar 

  • Dörner B, Kuntner C, Bankstahl JP et al (2009) Synthesis and small-animal positron emission tomography evaluation of [11C]-elacridar as a radiotracer to assess the distribution of P-glycoprotein at the blood-brain barrier. J Med Chem 52:6073–6082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dörner B, Kuntner C, Bankstahl JP et al (2011) Radiosynthesis and in vivo evaluation of 1-[18F]fluoroelacridar as a positron emission tomography tracer for P-glycoprotein and breast cancer resistance protein. Bioorganic Med Chem 19:2190–2198

    Article  CAS  Google Scholar 

  • Dorszewska J, Prendecki M, Oczkowska A, Dezor M, Kozubski W (2016) Molecular basis of familial and sporadic alzheimer’s disease. Curr Alzheimer Res 13:952–963

    Article  CAS  PubMed  Google Scholar 

  • Dürr D, Stieger B, Kullak-Ublick GA et al (2000) St John’s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin Pharmacol Ther 68:598–604

    Article  PubMed  Google Scholar 

  • Ehrlich P ( 1885) Das Sauerstoff-Bedürfniss des Organismus: eine farbenanalytische Studie

    Google Scholar 

  • Elsinga PH, Franssen EJ, Hendrikse NH, et al. Carbon-11-labeled daunorubicin and verapamil for probing P-glycoprotein in tumors with PET. J Nucl Med 1996;37:1571

    Google Scholar 

  • Erdilyi DJ, Kámory E, Csókay B et al (2008) Synergistic interaction of ABCB1 and ABCG2 polymorphisms predicts the prevalence of toxic encephalopathy during anticancer chemotherapy. Pharmacogenomics J 8:321–327

    Article  CAS  PubMed  Google Scholar 

  • Erny D, Hrabě de Angelis AL, Jaitin D et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18:965–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans SJ, Bassis CM, Hein R et al (2017) The gut microbiome composition associates with bipolar disorder and illness severity. J Psychiatr Res 87:23–29

    Article  PubMed  Google Scholar 

  • Fava M (2003) Diagnosis and definition of treatment-resistant depression. Biol Psychiatry 53:649

    Article  PubMed  Google Scholar 

  • FDA (2020) Clinical Drug Interaction Studies—Study Design, Data Analysis, and Clinical Implications Guidance for Industry

    Google Scholar 

  • Finch A, Pillans P (2014) P-glycoprotein and its role in drug-drug interactions. Aust Prescr 37:137–139

    Article  Google Scholar 

  • Fox E, Bates SE (2007) Tariquidar (XR9576): a P-glycoprotein drug efflux pump inhibitor. Expert Rev Anticancer Ther 7:447–459

    Article  CAS  PubMed  Google Scholar 

  • Froklage FE, Boellaard R, Bakker E et al (2015) Quantification of 11C-laniquidar kinetics in the brain. J Nucl Med 56:1730–1735

    Article  CAS  PubMed  Google Scholar 

  • Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F (2018) Overcoming the blood–brain barrier: the role of Nanomaterials in treating neurological diseases. Adv Mater 30:e1801362

    Article  PubMed  CAS  Google Scholar 

  • Ganguli M, Dodge HH, Shen C, DeKosky ST (2004) Mild cognitive impairment, amnestic type: an epidemiologic study. Neurology 63:115

    Article  PubMed  Google Scholar 

  • García-Varela L, Vállez García D, Rodríguez-Pérez M et al (2020) Test-retest repeatability of [18F]MC225-PET in rodents: a tracer for imaging of P-gp function. ACS Chem Neurosci 11:648–658

    Article  PubMed  CAS  Google Scholar 

  • Garner B, Pariante CM, Wood SJ et al (2005) Pituitary volume predicts future transition to psychosis in individuals at ultra-high risk of developing psychosis. Biol Psychiatry 58:417–423

    Article  PubMed  Google Scholar 

  • Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Rev 20:269–287

    Article  CAS  PubMed  Google Scholar 

  • Goate A, Chartier-Harlin MC, Mullan M et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706

    Article  CAS  PubMed  Google Scholar 

  • Hänninen T, Hallikainen M, Tuomainen S, Vanhanen M, Soininen H (2002) Prevalence of mild cognitive impairment: a population-based study in elderly subjects. Acta Neurol Scand 106:148–154

    Article  PubMed  Google Scholar 

  • Haran JP, Bhattarai SK, Foley SE et al (2019) Alzheimer’s disease microbiome is associated with dysregulation of the anti-inflammatory P-glycoprotein pathway. MBio 10:1–14. Pettigrew MM (ed)

    Article  Google Scholar 

  • Hartz AMS, Miller DS, Bauer B (2010) Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-β in a mouse model of Alzheimer ‘s disease. Mol Pharmacol 77:715–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins BT (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173

    Article  CAS  PubMed  Google Scholar 

  • Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    Article  CAS  PubMed  Google Scholar 

  • Hendrikse NH, Schinkel AH, De Vries EGE et al (1998a) Complete in vivo reversal of P-glycoprotein pump function in the blood-brain barrier visualized with positron emission tomography. Br J Pharmacol 124:1413–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrikse NH, Schinkel AH, De Vries EGE et al (1998b) Complete in vivo reversal of P-glycoprotein pump function in the blood-brain barrier visualized with positron emission tomography. Br J Pharmacol 124:1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herndon JM, Tome ME, Davis TP (2017) Development and maintenance of the blood-brain barrier. In: Caplan LR et al (eds) Primer on cerebrovascular diseases, 2nd edn. Elsevier, London, pp 51–56

    Chapter  Google Scholar 

  • Herz J, Bock HH (2002) Lipoprotein receptors in the nervous system. Annu Rev Biochem 71:405–434

    Article  CAS  PubMed  Google Scholar 

  • Higgins CF, Gottesman MM (1992) Is the multidrug transporter a flippase? Trends Biochem Sci 17:18–21

    Article  CAS  PubMed  Google Scholar 

  • Hoosain FG, Choonara YE, Tomar LK et al (2015) Bypassing P-glycoprotein drug efflux mechanisms: possible applications in Pharmacoresistant schizophrenia therapy. Biomed Res Int 2015:1

    Article  CAS  Google Scholar 

  • Houser MC, Tansey MG (2017) The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Park Dis 3:3

    Article  Google Scholar 

  • Huot KL, Lutfiyya MN, Akers MF, Amaro ML, Swanoski MT, Schweiss SK (2013) A population-based cross-sectional study of health service deficits among U.S. adults with depressive symptoms. BMC Health Serv Res 13:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikoma Y, Takano A, Ito H et al (2006a) Quantitative analysis of11C-verapamil transfer at the human blood-brain barrier for evaluation of P-glycoprotein function. J Nucl Med 47:1531–1537

    CAS  PubMed  Google Scholar 

  • Ikoma Y, Takano A, Ito H et al (2006b) Quantitative analysis of 11C-verapamil transfer at the human blood-brain barrier for evaluation of P-glycoprotein function. J Nucl Med 47:1531–1537

    CAS  PubMed  Google Scholar 

  • Jain S, Rathod V, Prajapati R, Nandekar PP, Sangamwar AT (2014) Pregnane X receptor and P-glycoprotein: a connexion for Alzheimer’s disease management. Mol Divers 18:895–909

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Ling Z, Zhang Y et al (2015) Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 48:186–194

    Article  PubMed  Google Scholar 

  • Jiang X, Andjelkovic AV, Zhu L et al (2018) Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol 163–164:144

    Article  PubMed  CAS  Google Scholar 

  • Joseph DN, Whirledge S (2017) Stress and the HPA axis: balancing homeostasis and fertility. Int J Mol Sci 18:2224

    Article  PubMed Central  CAS  Google Scholar 

  • Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. BBA-Biomembranes 455:152

    Article  CAS  PubMed  Google Scholar 

  • Kannan P, John C, Zoghbi SS et al (2009a) Imaging the function of P-glycoprotein with radiotracers: pharmacokinetics and in vivo applications. Clin Pharmacol Ther 86:368–377

    Article  CAS  PubMed  Google Scholar 

  • Kannan P, John C, Zoghbi SS et al (2009b) Imaging the function of P-glycoprotein with radiotracers: pharmacokinetics and in vivo applications. Clin Pharmacol Ther 86:368

    Article  CAS  PubMed  Google Scholar 

  • Kannan P, John C, Zoghbi SS et al (2009c) Imaging the function of P-glycoprotein with radiotracers: pharmacokinetics and in vivo applications. Clin Pharmacol Ther 86:368–377

    Article  CAS  PubMed  Google Scholar 

  • Karssen AM, Meijer OC, Van Der Sandt ICJ et al (2001) Multidrug resistance P-glycoprotein hampers the access of cortisol but not of corticosterone to mouse and human brain. Endocrinology 142:2686–2694

    Article  CAS  PubMed  Google Scholar 

  • Kiesewetter DO, Jagoda EM, Kao C-HK et al (2003) Fluoro-, bromo-, and iodopaclitaxel derivatives: synthesis and biological evaluation. Nucl Med Biol 30:11–24

    Article  CAS  PubMed  Google Scholar 

  • Kim RB (2002) Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev 34:47–54

    Article  CAS  PubMed  Google Scholar 

  • Kim RB, Wandel C, Leake B et al (1999) Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 16:408–414

    Article  CAS  PubMed  Google Scholar 

  • de Klerk OL, Willemsen ATM, Roosink M et al (2009) Locally increased P-glycoprotein function in major depression: a PET study with [11C]verapamil as a probe for P-glycoprotein function in the blood–brain barrier. Int J Neuropsychopharmacol 12:895

    Article  PubMed  CAS  Google Scholar 

  • de Klerk OL, Willemsen ATM, Bosker FJ et al (2010) Regional increase in P-glycoprotein function in the blood-brain barrier of patients with chronic schizophrenia. Psychiatry Res Neuroimaging 183:151–156

    Article  CAS  Google Scholar 

  • Kliewer SA, Goodwin B, Willson TM (2002) The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr Rev 23:687–702

    Article  CAS  PubMed  Google Scholar 

  • Kreisl WC, Liow JS, Kimura N et al (2010) P-glycoprotein function at the blood-brain barrier in humans can be quantified with the substrate radiotracer 11C-N-desmethyl-loperamide. J Nucl Med 51:559–566

    Article  CAS  PubMed  Google Scholar 

  • Kurdziel KA, Kiesewetter DO, Carson RE, Eckelman WC, Herscovitch P (2003a) Biodistribution, radiation dose estimates, and in vivo Pgp modulation studies of 18F-paclitaxel in nonhuman primates. J Nucl Med 44:1330–1339

    CAS  PubMed  Google Scholar 

  • Kurdziel KA, Kiesewetter DO, Carson RE, Eckelman WC, Herscovitch P (2003b) Biodistribution, radiation dose estimates, and in vivo pgp modulation studies of 18 F-paclitaxel in nonhuman primates. J Nucl Med 44:1330–1339

    CAS  PubMed  Google Scholar 

  • Kurdziel KA, Kalen JD, Hirsch JI et al (2011) Human dosimetry and preliminary tumor distribution of 18F- fluoropaclitaxel in healthy volunteers and newly diagnosed breast cancer patients using PET/CT. J Nucl Med 52:1339–1345

    Article  CAS  PubMed  Google Scholar 

  • Lam FC, Liu R, Lu P et al (2001) β-Amyloid efflux mediated by p-glycoprotein. J Neurochem 76:1121–1128

    Article  CAS  PubMed  Google Scholar 

  • de Lannoy IA, Silverman M (1992) The MDR1 gene product, P-glycoprotein, mediates the transport of the cardiac glycoside, digoxin. Biochem Biophys Res Commun 189:551–557

    Article  PubMed  Google Scholar 

  • Lei Y, Tan J, Wink M, Ma Y, Li N, Su G (2013) An isoquinoline alkaloid from the Chinese herbal plant Corydalis yanhusuo W.T. Wang inhibits P-glycoprotein and multidrug resistance-associate protein 1. Food Chem 136:1117–1121

    Article  CAS  PubMed  Google Scholar 

  • Lin JH, Chiba M, Chen IW et al (1999) Effect of dexamethasone on the intestinal first-pass metabolism of indinavir in rats: evidence of cytochrome P-450 3A [correction of P-450 a] and p-glycoprotein induction. Drug Metab Dispos 27:1187–1193

    CAS  PubMed  Google Scholar 

  • Lin CH, Chen CC, Chiang HL et al (2019) Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease. J Neuroinflammation 16:129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Linnet K, Ejsing TB (2008) A review on the impact of P-glycoprotein on the penetration of drugs into the brain. Focus on psychotropic drugs. Eur Neuropsychopharmacol 18:157–169

    Article  CAS  PubMed  Google Scholar 

  • Liow J-S, Kreisl W, Zoghbi SS et al (2009) P-glycoprotein function at the blood-brain barrier imaged using 11C-N-desmethyl-loperamide in monkeys. J Nucl Med 50:108–115

    Article  PubMed  Google Scholar 

  • List AF, Kopecky KJ, Willman CL et al (2001) Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a southwest oncology group study. Blood 98:3212–3220

    Article  CAS  PubMed  Google Scholar 

  • Liu X (2019a) ABC family transporters. Adv Exp Med Biol 1141:13–100

    Article  CAS  PubMed  Google Scholar 

  • Liu X (2019b) ABC family transporters. Adv Exp Med Biol 1141:13–100

    Article  CAS  PubMed  Google Scholar 

  • Lozano IH, Bauer M, Wulkersdorfer B et al (2019) Measurement of hepatic ABCB1 and ABCG2 transport activity with [11C]Tariquidar and PET in humans and mice. Mol Pharm 17:316–326

    Article  CAS  Google Scholar 

  • Lubberink M, Luurtsema G, van Berckel BN et al (2007) Evaluation of tracer kinetic models for quantification of P-glycoprotein function using (R)-[ 11 C]verapamil and PET. J Cereb Blood Flow Metab 27:424–433

    Article  CAS  PubMed  Google Scholar 

  • Lund M, Petersen TS, Dalhoff KP (2017) Clinical implications of P-glycoprotein modulation in drug-drug interactions. Drugs 77:859–883

    Article  CAS  PubMed  Google Scholar 

  • Luurtsema G, Molthoff CFM, Schuit RC, Windhorst AD, Lammertsma AA, Franssen EJF (2005) Evaluation of (R)-[11C]verapamil as {PET} tracer of P-glycoprotein function in the blood{\textendash}brain barrier: kinetics and metabolism in the rat. Nucl Med Biol 32:87–93

    Article  CAS  PubMed  Google Scholar 

  • Luurtsema G, Schuit RC, Klok RP et al (2009a) Evaluation of [11C]laniquidar as a tracer of P-glycoprotein: radiosynthesis and biodistribution in rats. Nucl Med Biol 36:643–649

    Article  CAS  PubMed  Google Scholar 

  • Luurtsema G, Schuit RC, Klok RP et al (2009b) Evaluation of [11C]laniquidar as a tracer of P-glycoprotein: radiosynthesis and biodistribution in rats. Nucl Med Biol 36:643–649

    Article  CAS  PubMed  Google Scholar 

  • Luurtsema G, Elsinga P, Dierckx R, Boellaard R, Waarde A (2016) PET tracers for imaging of ABC transporters at the blood-brain barrier: principles and strategies. Curr Pharm Des 22:5779–5785

    Article  CAS  PubMed  Google Scholar 

  • Mansor S, Boellaard R, Froklage FE et al (2015) Quantification of dynamic 11C-phenytoin PET studies. J Nucl Med 56:1372–1377

    Article  CAS  PubMed  Google Scholar 

  • Mansor S, Yaqub M, Boellaard R et al (2017) Parametric methods for dynamic 11C-phenytoin PET studies. J Nucl Med 58:479–483

    Article  CAS  PubMed  Google Scholar 

  • Mason BL, Pariante CM, Thomas SA (2008) A revised role for P-glycoprotein in the brain distribution of dexamethasone, cortisol, and corticosterone in wild-type and ABCB1A/B-deficient mice. Endocrinology 149:5244–5253

    Article  CAS  PubMed  Google Scholar 

  • Mawuenyega KG, Sigurdson W, Ovod V et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarty JH (2005) Cell biology of the neurovascular unit: implications for drug delivery across the blood–brain barrier. Assay Drug Dev Technol 3:89

    Article  CAS  PubMed  Google Scholar 

  • Miller DS, Bauer B, Hartz AMS (2008) Modulation of P-glycoprotein at the blood-brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev 60:196–209

    Article  CAS  PubMed  Google Scholar 

  • Moons T, De Roo M, Claes S, Dom G (2011) Relationship between P-glycoprotein and second-generation antipsychotics. Pharmacogenomics 12:1193–1211

    Article  CAS  PubMed  Google Scholar 

  • Moreno SB, Zackrisson AL, Jakobsen Falk I et al (2013) ABCB1 gene polymorphisms are associated with suicide in forensic autopsies. Pharmacogenet Genomics 23:463–469

    Article  CAS  Google Scholar 

  • O’Brien FE, Dinan TG, Griffin BT, Cryan JF (2012) Interactions between antidepressants and P-glycoprotein at the blood-brain barrier: clinical significance of in vitro and in vivo findings. Br J Pharmacol 165:289–312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osgood D, Miller MC, Messier AA, Gonzalez L, Silverberg GD (2017) Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier. Neurobiol Aging 57:178–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardridge WM (1998) Blood-brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochem Res 23:635

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2012) Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 32:1959–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pariante CM (2009) Risk factors for development of depression and psychosis: glucocorticoid receptors and pituitary implications for treatment with antidepressant and glucocorticoids. Ann N Y Acad Sci 1179:144–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pariante CM, Hye A, Williamson R, Makoff A, Lovestone S, Kerwin RW (2003) The antidepressant clomipramine regulates cortisol intracellular concentrations and glucocorticoid receptor expression in fibroblasts and rat primary neurones. Neuropsychopharmacology 28:1553–1561

    Article  CAS  PubMed  Google Scholar 

  • Pariante CM, Vassilopoulou K, Velakoulis D et al (2004) Pituitary volume in psychosis. Br J Psychiatry 185:5–10

    Article  PubMed  Google Scholar 

  • Passchier J, Comley R, Salinas C et al (2008) The role of P-glycoprotein on blood brain barrier permeability of [11C]Loperamide in humans. NeuroImage 41:T192

    Article  Google Scholar 

  • Patel NR, Rathi A, Mongayt D, Torchilin VP (2011) Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. Int J Pharm 416:296–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauli-Magnus C, Von Richter O, Burk O et al (2000) Characterization of the major metabolites of verapamil as substrates and inhibitors of P-glycoprotein. J Pharmacol Exp Ther 293:376–382

    CAS  PubMed  Google Scholar 

  • Pereira CD, Martins F, Wiltfang J, Da Cruz E Silva OAB, Rebelo S. (2017) ABC transporters are key players in Alzheimer’s disease. J Alzheimers Dis 61:463

    Article  CAS  Google Scholar 

  • Perloff MD, Von Moltke LL, Fahey JM, Daily JP, Greenblatt DJ (2000) Induction of P-glycoprotein expression by HIV protease inhibitors in cell culture. AIDS 14:1287–1289

    Article  CAS  PubMed  Google Scholar 

  • Picchianti-Diamanti A, Rosado MM, Scarsella M, Laganà B, D’Amelio R (2014) P-glycoprotein and drug resistance in systemic autoimmune diseases. Int J Mol Sci 15:4965–4976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piwnica-Worms D, Kesarwala AH, Pichler A, Prior JL, Sharma V (2006) Single photon emission computed tomography and positron emission tomography imaging of multi-drug resistant P-glycoprotein-monitoring a transport activity important in cancer, blood-brain barrier function and Alzheimer’s disease. Neuroimaging Clin N Am 16:575–589

    Article  PubMed  Google Scholar 

  • Polli JW, Jarrett JL, Studenberg SD et al (1999) Role of P-glycoprotein on the CNS disposition of amprenavir (141W94), an HIV protease inhibitor. Pharm Res 16:1206–1212

    Article  CAS  PubMed  Google Scholar 

  • Postnov A, Froklage FE, Van Lingen A et al (2013) Radiation dose of the P-glycoprotein tracer 11C-laniquidar. J Nucl Med 54:2101–2103

    Article  CAS  PubMed  Google Scholar 

  • Pottier G, Marie S, Goutal S et al (2016) Imaging the impact of the p-glycoprotein (ABCB1) function on the brain kinetics of metoclopramide. J Nucl Med 57:309–314

    Article  CAS  PubMed  Google Scholar 

  • Raaphorst R, Windhorst A, Elsinga P, Colabufo N, Lammertsma A, Luurtsema G (2015a) Radiopharmaceuticals for assessing ABC transporters at the blood-brain barrier. Clin Pharmacol Ther 97:362–371

    Article  CAS  PubMed  Google Scholar 

  • Raaphorst RM, Savolainen H, Cantore M et al (2017) Comparison of in vitro assays in selecting radiotracers for in vivo P-glycoprotein PET imaging. Pharmaceuticals (Basel) 10:76

    Article  CAS  Google Scholar 

  • Raviv Y, Pollard HB, Bruggemann EP, Pastan I, Gottesman MM (1990) Photosensitized labeling of a functional multidrug transporter in living drug-resistant tumor cells. J Biol Chem 265:3975–3980

    Article  CAS  PubMed  Google Scholar 

  • Ray A, Tennakoon L, Keller J et al (2015) ABCB1 (MDR1) predicts remission on P-gp substrates in chronic depression. Pharmacogenomics J 15:332

    Article  CAS  PubMed  Google Scholar 

  • Römermann K, Wanek T, Bankstahl M et al (2013) (R)-[ 11 C]verapamil is selectively transported by murine and human P-glycoprotein at the blood-brain barrier, and not by MRP1 and BCRP. Nucl Med Biol 40:873–878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakaeda T, Nakamura T, Okumura K (2002) MDR1 genotype-related pharmacokinetics and pharmacodynamics. Biol Pharm Bull 25:1391

    Article  CAS  PubMed  Google Scholar 

  • Sanford AM (2017a) Mild cognitive impairment. Clin Geriatr Med 33:325–337

    Article  PubMed  Google Scholar 

  • Sanford AM (2017b) Mild cognitive impairment. Clin Geriatr Med 33:325–337

    Article  PubMed  Google Scholar 

  • Sasongko L, Link JM, Muzi M et al (2005) Imaging P-glycoprotein transport activity at the human blood-brain barrier with positron emission tomography. Clin Pharmacol Ther 77:503–514

    Article  CAS  PubMed  Google Scholar 

  • Schinkel AH, Wagenaar E, Mol CAAM, Van Deemter L (1996) P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 97:2517–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuetz EG, Beck WT, Schuetz JD (1996) Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol Pharmacol 49:311–318

    CAS  PubMed  Google Scholar 

  • Schuetz EG, Yasuda K, Arimori K, Schuetz JD (1998) Human MDR1 and mouse mdr1a P-glycoprotein alter the cellular retention and disposition of erythromycin, but not of retinoic acid or benzo(a)pyrene. Arch Biochem Biophys 350:340–347

    Article  CAS  PubMed  Google Scholar 

  • Seneca N, Zoghbi SS, Liow JS et al (2009) Human brain imaging and radiation dosimetry of 11C-N-desmethyl- loperamide, a PET radiotracer to measure the function of P-glycoprotein. J Nucl Med 50:807–813

    Article  CAS  PubMed  Google Scholar 

  • Seneca N, Zoghbi SS, Shetty HU et al (2010) Effects of ketoconazole on the biodistribution and metabolism of [11C]loperamide and [11C]N-desmethyl-loperamide in wild-type and P-gp knockout mice. Nucl Med Biol 37:335–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serlin Y, Shelef I, Knyazer B, Friedman A (2015) Anatomy and physiology of the blood-brain barrier. Semin Cell Dev Biol 38:2–6

    Article  PubMed  PubMed Central  Google Scholar 

  • Shapiro AB, Ling V (1997) Positively cooperative sites for drug transport by P-glycoprotein with distinct drug specificities. Eur J Biochem 250:130–137

    Article  CAS  PubMed  Google Scholar 

  • Sherrington R, Froelich S, Sorbi S et al (1996) Alzheimer’s disease associated with mutations in presenilin 2 is rare and variably penetrant. Hum Mol Genet 5:985–988

    Article  CAS  PubMed  Google Scholar 

  • Silva R, Sousa E, Carmo H et al (2014a) Induction and activation of P-glycoprotein by dihydroxylated xanthones protect against the cytotoxicity of the P-glycoprotein substrate paraquat. Arch Toxicol 88:937–951

    Article  CAS  PubMed  Google Scholar 

  • Silva R, Sousa E, Carmo H et al (2014b) Induction and activation of P-glycoprotein by dihydroxylated xanthones protect against the cytotoxicity of the P-glycoprotein substrate paraquat. Arch Toxicol 88:937–951

    Article  CAS  PubMed  Google Scholar 

  • Silva R, Vilas-Boas V, Carmo H et al (2015) Modulation of P-glycoprotein efflux pump: induction and activation as a therapeutic strategy. Pharmacol Ther 149:1–123

    Article  CAS  PubMed  Google Scholar 

  • Slot AJ, Wise DD, Deeley RG, Monks TJ, Cole SPC (2008) Modulation of human multidrug resistance protein (MRP) 1 (ABCC1) and MRP2 (ABCC2) transport activities by endogenous and exogenous glutathione-conjugated catechol metabolites. Drug Metab Dispos 36:552

    Article  CAS  PubMed  Google Scholar 

  • Staddon JM, Rubin LL (1996) Cell adhesion, cell junctions and the blood-brain barrier. Curr Opin Neurobiol 6:622

    Article  CAS  PubMed  Google Scholar 

  • Stamatovic SM, Johnson AM, Keep RF, Andjelkovic AV (2016) Junctional proteins of the blood-brain barrier: new insights into function and dysfunction. Tissue Barriers 4:e1154641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sterz K, Möllmann L, Jacobs A, Baumert D, Wiese M (2009) Activators of P-glycoprotein: structure-activity relationships and investigation of their mode of action. ChemMedChem 4:1897–1911

    Article  CAS  PubMed  Google Scholar 

  • Sugawara I, Kataoka I, Morishita Y et al (1988) Tissue distribution of P-glycoprotein encoded by a multidrug-resistant gene as revealed by a monoclonal antibody, MRK 16. Cancer Res 48:1926–1929

    CAS  PubMed  Google Scholar 

  • Summerfield SG, Zhang Y, Liu H (2016) Examining the uptake of central nervous system drugs and candidates across the blood-brain barrier. J Pharmacol Exp Ther 358:294–305

    Article  CAS  PubMed  Google Scholar 

  • Syvänen S, Eriksson J (2013) Advances in PET imaging of P-glycoprotein function at the blood-brain barrier. ACS Chem Neurosci 4:225–237

    Article  PubMed  CAS  Google Scholar 

  • Syvänen S, Blomquist G, Sprycha M et al (2006) Duration and degree of cyclosporin induced P-glycoprotein inhibition in the rat blood-brain barrier can be studied with PET. NeuroImage 32:1134–1141

    Article  PubMed  Google Scholar 

  • Syvänen S, Luurtsema G, Molthoff CFM et al (2011) (R)-[11C]Verapamil PET studies to assess changes in P-glycoprotein expression and functionality in rat blood-brain barrier after exposure to kainate-induced status epilepticus. BMC Med Imaging 11:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Syvänen S, Russmann V, Verbeek J et al (2013) [11C]quinidine and [11C]laniquidar PET imaging in a chronic rodent epilepsy model: impact of epilepsy and drug-responsiveness. Nucl Med Biol 40:764–775

    Article  PubMed  CAS  Google Scholar 

  • Takano M, Yumoto R, Murakami T (2006) Expression and function of efflux drug transporters in the intestine. Pharmacol Ther 109:137–161

    Article  CAS  PubMed  Google Scholar 

  • Taub ME, Podila L, Ely D, Almeida I (2005) Functional assessment of multiple p-glycoprotein (P-gp) probe substrates: influence of cell line and modulator concentration on P-gp activity. Drug Metab Dispos 33:1679–1687

    Article  CAS  PubMed  Google Scholar 

  • Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC (1987) Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci 84:7735–7738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toornvliet R, van Berckel BNM, Luurtsema G et al (2006) Effect of age on functional P-glycoprotein in the blood-brain barrier measured by use of (R)-[11C]verapamil and positron emission tomography. Clin Pharmacol Ther 79:540–548

    Article  CAS  PubMed  Google Scholar 

  • de la Torre JC (2017) Are major dementias triggered by poor blood flow to the brain? Theoretical considerations. J Alzheimers Dis 57:353–371

    Article  PubMed  Google Scholar 

  • Tournier N, Valette H, Peyronneau MA et al (2011) Transport of selected PET radiotracers by human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2): an in vitro screening. J Nucl Med 52:415–423

    Article  CAS  PubMed  Google Scholar 

  • Tournier N, Bauer M, Pichler V et al (2019a) Impact of P-glycoprotein function on the brain kinetics of the weak substrate 11C-metoclopramide assessed with PET imaging in humans. J Nucl Med 60:985–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tournier N, Bauer M, Pichler V et al (2019b) Impact of P-glycoprotein function on the brain kinetics of the weak substrate 11C-metoclopramide assessed with PET imaging in humans. J Nucl Med 60:985–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyohara J, Garcia Varela L, Kakiuchi T, Hiroyuki O, Nishiyama S, Tago T, Vállez García D, Boellaard R, Elsinga PH, Tsukada HL (2017) Head to head comparison of (R)-[11C]verapamil and [18F]MC225 in non-human primates; tracers for measuring P-gp function at the blood-brain barrier. Eur J Nucl Med Mol Imaging 44:S366

    CAS  Google Scholar 

  • Tremlett H, Bauer KC, Appel-Cresswell S, Finlay BB, Waubant E (2017) The gut microbiome in human neurological disease: a review. Ann Neurol 81:369–382

    Article  PubMed  Google Scholar 

  • Tsuji A (2005) Small molecular drug transfer across the blood-brain barrier via carrier-mediated transport systems. NeuroRx 2:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueda K, Okamura N, Hirai M et al (1992) Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem 267:24248–24252

    Article  CAS  PubMed  Google Scholar 

  • Uhr M, Holsboer F, Müller MB (2002) Penetration of endogenous steroid hormones corticosterone, cortisol, aldosterone and progesterone into the brain is enhanced in mice deficient for both mdr1a and mdr1b P-glycoproteins. J Neuroendocrinol 14:753–759

    Article  CAS  PubMed  Google Scholar 

  • Van Assema DME, Lubberink M, Boellaard R et al (2012a) P-glycoprotein function at the blood-brain barrier: effects of age and gender. Mol Imaging Biol 14:771–776

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Assema DME, Lubberink M, Bauer M et al (2012b) Blood-brain barrier P-glycoprotein function in Alzheimer’s disease. Brain 135:181–189

    Article  PubMed  Google Scholar 

  • Verbeek J, Eriksson J, Syvänen S et al (2012a) [11C]phenytoin revisited: Synthesis by [11C]CO carbonylation and first evaluation as a P-gp tracer in rats. EJNMMI Res 2:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verbeek J, Eriksson J, Syvänen S et al (2012b) [11C]phenytoin revisited: synthesis by [11C]CO carbonylation and first evaluation as a P-gp tracer in rats. EJNMMI Res 2:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vogelgesang S, Cascorbi I, Schroeder E et al (2002a) Deposition of Alzheimer’s β-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics 12:535–541

    Article  CAS  PubMed  Google Scholar 

  • Vogelgesang S, Cascorbi I, Schroeder E et al (2002b) Deposition of Alzheimer’s beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics 12:535–541

    Article  CAS  PubMed  Google Scholar 

  • Vogt NM, Kerby RL, Dill-McFarland KA et al (2017) Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7:13537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wagner CC, Bauer M, Karch R et al (2009) A pilot study to assess the efficacy of tariquidar to inhibit P-glycoprotein at the human blood-brain barrier with (R)-11C-verapamil and PET. J Nucl Med 50:1954

    Article  PubMed  Google Scholar 

  • Wang Y, Kasper LH (2014) The role of microbiome in central nervous system disorders. Brain Behav Immun 38:1–12

    Article  PubMed  CAS  Google Scholar 

  • Wang RB, Kuo CL, Lien LL, Lien EJ (2003) Structure-activity relationship: analyses of p-glycoprotein substrates and inhibitors. J Clin Pharm Ther 28:203–228

    Article  CAS  PubMed  Google Scholar 

  • Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier: development, composition and regulation. Vasc Pharmacol 38:323

    Article  CAS  Google Scholar 

  • Yamamoto Y, Välitalo PA, Wong YC et al (2018) Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach. Eur J Pharm Sci 112:168

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y (2004) Plasma membrane localization of multidrug resistance-associated protein homologs in brain capillary endothelial cells. J Pharmacol Exp Ther 311:449

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Chen X, Benet LZ (2016) Reliability of in vitro and in vivo methods for predicting the effect of p-glycoprotein on the delivery of antidepressants to the brain. Clin Pharmacokinet 55:143–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S-F (2008) Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 38:802–832

    Article  CAS  PubMed  Google Scholar 

  • Zhou SF, Xue CC, Yu XQ, Li C, Wang G (2007) Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther Drug Monit 29:687–710

    Article  CAS  PubMed  Google Scholar 

  • Zhuang Z-Q, Shen L-L, Li W-W et al (2018) Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimers Dis 63:1337–1346

    Article  CAS  PubMed  Google Scholar 

  • Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201

    Article  CAS  PubMed  Google Scholar 

  • Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12:723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoghbi SS, Liow JS, Yasuno F et al (2008) 11C-loperamide and its N-desmethyl radiometabolite are avid substrates for brain permeability-glycoprotein efflux. J Nucl Med 49:649–656

    Article  CAS  PubMed  Google Scholar 

  • Zoufal V, Mairinger S, Brackhan M et al (2020) Imaging P-glycoprotein induction at the blood-brain barrier of a beta-amyloidosis mouse model with 11 C-metoclopramide PET. J Nucl Med 61:1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Luurtsema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mossel, P., Bartels, A.L., de Deyn, P.P., Luurtsema, G. (2021). The Role of P-Glycoprotein at the Blood–Brain Barrier in Neurological and Psychiatric Disease. In: Dierckx, R.A., Otte, A., de Vries, E.F.J., van Waarde, A., Sommer, I.E. (eds) PET and SPECT in Psychiatry. Springer, Cham. https://doi.org/10.1007/978-3-030-57231-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57231-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57230-3

  • Online ISBN: 978-3-030-57231-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics