Skip to main content

Acetylcholine Imaging in Psychosis

  • Chapter
  • First Online:
PET and SPECT in Psychiatry

Abstract

Core symptoms of psychosis include delusions, hallucinations, motor symptoms, and cognitive impairments. The cholinergic system has been increasingly implied in the pathophysiology of psychotic disorders. PET and SPECT imaging can be useful tools to increase our insight in the role of the neurotransmitter acetylcholine in psychosis. In this chapter we will first globally describe cholinergic neurotransmission and the function of the nicotinic and muscarinic receptors. Second, we will provide an overview of PET and SPECT studies examining the cholinergic system in psychosis. Finally, we will briefly discuss the results of these studies as well as future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ach:

Acetylcholine

AcCoa:

Acetyl-coenzyme A

AChE:

Acetylcholinesterase

AChE-Is:

Acetylcholinesterase inhibitors

AD:

Alzheimer’s disease

α-BTX:

α-Bungarotoxin

BPND:

Binding potential nondisplaceable

ChAT:

Choline acetyltransferase

Cho:

Choline

CNS:

Central nervous system

DLPFC:

Dorsolateral prefrontal cortex

[18F]FEOBV:

[18F]fluoroethoxybenzovesamicol

[18F]ASEM:

[18F]-JHU82132; 3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-6-18F]fluorodibenzo[b,d]thiophene 5,5-dioxide)

2-[18F]F-A-85380:

2-[18F]fluoro-3-(2(S)azetidinylmethoxy)pyridine

[3H]QNB:

[3H](R)-3-quinuclidinylbenzilate

[123I]-IDEX:

[123I]-iododexetimide

[123I]-IBVM:

[123I]-iodobenzovesamicol

[123I]5-IA-85380:

[(123)I]-5-iodo-3-[2(S)-azetidinylmethoxy]pyridine)

mAChRs:

Muscarinic acetylcholine receptors

MRS:

Magnetic resonance spectroscopy

nAChRs:

Nicotinic acetylcholine receptors

OFC:

Orbitofrontal cortex

PD:

Parkinson’s disease

PET:

Positron emission tomography

PNS:

Peripheral nervous system

SPECT:

Single-photon emission computed tomography

VAChT:

Vesicular acetylcholine transporter

References

  • Aghourian M, Legault-Denis C, Soucy J-P, Rosa-Neto P, Gauthier S, Kostikov A et al (2017) Quantification of brain cholinergic denervation in Alzheimer’s disease using PET imaging with [18F]-FEOBV. Mol Psychiatry 22:1531–1538

    Article  CAS  PubMed  Google Scholar 

  • Albuquerque EX, Alkondon M, Pereira EF, Castro NG, Schrattenholz A, Barbosa CT et al (1997) Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function. J Pharmacol Exp Ther 280:1117–1136

    CAS  PubMed  Google Scholar 

  • Bakker G, Vingerhoets WA, van Wieringen J-P, de Bruin K, Eersels J, de Jong J et al (2015) 123I-Iododexetimide Preferentially Binds to the Muscarinic Receptor Subtype M1 In Vivo. J Nucl Med 56:317–322

    Article  PubMed  CAS  Google Scholar 

  • Bakker G, Vingerhoets C, Boucherie D, Caan M, Bloemen O, Eersels J et al (2018) Relationship between muscarinic M1 receptor binding and cognition in medication-free subjects with psychosis. NeuroImage Clin 18:713–719

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes TRE, Mutsatsa SH, Hutton SB, Watt HC, Joyce EM (2006) Comorbid substance use and age at onset of schizophrenia. Br J Psychiatry 188:237–242

    Article  PubMed  Google Scholar 

  • Bennett JP, Enna SJ, Bylund DB, Gillin JC, Wyatt RJ, Snyder SH (1979) Neurotransmitter receptors in frontal cortex of schizophrenics. Arch Gen Psychiatry 36:927

    Article  CAS  PubMed  Google Scholar 

  • Benwell MEM, Balfour DJK, Anderson JM (1988) Evidence that tobacco smoking increases the density of (-)-[ 3 H]nicotine binding sites in human brain. J Neurochem 50:1243–1247

    Article  CAS  PubMed  Google Scholar 

  • Bohnen NI, Grothe MJ, Ray NJ, Müller MLTM, Teipel SJ (2018) Recent advances in cholinergic imaging and cognitive decline—revisiting the cholinergic hypothesis of dementia. Curr Geriatr Rep 7:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • BraÅ¡ić JR, Cascella N, Kumar A, Zhou Y, Hilton J, Raymont V et al (2012) Positron emission tomography experience with 2-[18F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[18F]FA) in the living human brain of smokers with paranoid schizophrenia. Synapse 66:352–368

    Article  PubMed  CAS  Google Scholar 

  • Brody AL, Mandelkern MA, London ED, Olmstead RE, Farahi J, Scheibal D et al (2006) Cigarette smoking saturates brain alpha 4 beta 2 nicotinic acetylcholine receptors. Arch Gen Psychiatry 63:907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bustillo JR, Rowland LM, Lauriello J, Petropoulos H, Hammond R, Hart B et al (2002) High choline concentrations in the caudate nucleus in antipsychotic-naive patients with schizophrenia. Am J Psychiatry 159:130–133

    Article  PubMed  Google Scholar 

  • Bustillo JR, Chen H, Jones T, Lemke N, Abbott C, Qualls C et al (2014) Increased glutamine in patients undergoing long-term treatment for schizophrenia: a proton magnetic resonance spectroscopy study at 3 T. JAMA Psychiatry 71:265–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bymaster FP, McKinzie DL, Felder CC, Wess J (2003) Use of M1–M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res 28:437–442

    Article  CAS  PubMed  Google Scholar 

  • Carruthers SP, Gurvich CT, Rossell SL (2015) The muscarinic system, cognition and schizophrenia. Neurosci Biobehav Rev 55:393–402

    Article  CAS  PubMed  Google Scholar 

  • Caulfield MP, Birdsall NJ (1998) International union of pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290

    CAS  PubMed  Google Scholar 

  • Chen D, Patrick JW (1997) The alpha-bungarotoxin-binding nicotinic acetylcholine receptor from rat brain contains only the alpha7 subunit. J Biol Chem 272:24,024–24,029

    Article  CAS  Google Scholar 

  • Chong HY, Teoh SL, DB-C W, Kotirum S, Chiou C-F, Chaiyakunapruk N (2016) Global economic burden of schizophrenia: a systematic review. Neuropsychiatr Dis Treat 12:357–373

    PubMed  PubMed Central  Google Scholar 

  • Coughlin J, Du Y, Crawford JL, Rubin LH, Behnam Azad B, Lesniak WG et al (2018) The availability of the α7 nicotinic acetylcholine receptor in recent-onset psychosis: a study using 18F-ASEM PET. J Nucl Med 60:241–243

    Article  CAS  Google Scholar 

  • Coughlin JM, Horti AG, Pomper MG (2019) Opportunities in precision psychiatry using PET neuroimaging in psychosis. Neurobiol Dis 131:104,428

    Article  Google Scholar 

  • Court J, Spurden D, Lloyd S, McKeith I, Ballard C, Cairns N et al (1999) Neuronal nicotinic receptors in dementia with lewy bodies and schizophrenia: α-bungarotoxin and nicotine binding in the thalamus. J Neurochem 73:1590–1597

    Article  CAS  PubMed  Google Scholar 

  • Crook JM, Dean B, Pavey G, Copolov D (1999) The binding of [3H]AF-DX 384 is reduced in the caudate-putamen of subjects with schizophrenia. Life Sci 64:1761–1771

    Article  CAS  PubMed  Google Scholar 

  • Crook JM, Tomaskovic-Crook E, Copolov DL, Dean B (2000) Decreased muscarinic receptor binding in subjects with schizophrenia: a study of the human hippocampal formation. Biol Psychiatry 48:381–388

    Article  CAS  PubMed  Google Scholar 

  • Crook JM, Tomaskovic-Crook E, Copolov DL, Dean B (2001) Low muscarinic receptor binding in prefrontal cortex from subjects with schizophrenia: a study of brodmann’s areas 8, 9, 10, and 46 and the effects of neuroleptic drug treatment. Am J Psychiatry 158:918–925

    Article  CAS  PubMed  Google Scholar 

  • D’Souza DC, Esterlis I, Carbuto M, Krasenics M, Seibyl J, Bois F et al (2012) Lower β2*-nicotinic acetylcholine receptor availability in smokers with schizophrenia. Am J Psychiatry 169:326–334

    Article  PubMed  Google Scholar 

  • Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699–729

    Article  CAS  PubMed  Google Scholar 

  • Dean B, Crook JM, Opeskin K, Hill C, Keks N, Copolov DL (1996) The density of muscarinic M1 receptors is decreased in the caudate-putamen of subjects with schizophrenia. Mol Psychiatry 1:54–58

    CAS  PubMed  Google Scholar 

  • Dean B, Mcleod M, Keriakous D, Mckenzie J, Scarr E (2002) Decreased muscarinic 1 receptors in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 7:1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Eglen RM (2006) Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton Autacoid Pharmacol 26:219–233

    Article  CAS  PubMed  Google Scholar 

  • Esterlis I, Ranganathan M, Bois F, Pittman B, Picciotto MR, Shearer L et al (2014) In vivo evidence for β2 nicotinic acetylcholine receptor subunit upregulation in smokers as compared with nonsmokers with schizophrenia. Biol Psychiatry 76:495–502

    Article  CAS  PubMed  Google Scholar 

  • Everitt BJ, Robbins TW (1997) Central cholinerig systems. Annu Rev Psychol 48:649–684

    Article  CAS  PubMed  Google Scholar 

  • Fibiger HC (1991) Cholinergic mechanisms in learning, memory and dementia: a review of recent evidence. Trends Neurosci 14:220–223

    Article  CAS  PubMed  Google Scholar 

  • Freedman R, Hall M, Adler LE, Leonard S (1995) Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38:22–33

    Article  CAS  PubMed  Google Scholar 

  • Gu Q (2002) Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience 111:815–835

    Article  CAS  PubMed  Google Scholar 

  • Guan ZZ, Zhang X, Blennow K, Nordberg A (1999) Decreased protein level of nicotinic receptor α7 subunit in the frontal cortex from schizophrenic brain. Neuroreport 10:1779–1782

    Article  CAS  PubMed  Google Scholar 

  • Jones CK, Byun N, Bubser M (2012) Muscarinic and nicotinic acetylcholine receptor agonists and allosteric modulators for the treatment of schizophrenia. Neuropsychopharmacology 37:16–42

    Article  CAS  PubMed  Google Scholar 

  • KirtaÅŸ D, KaradaÄŸ RF, Balci Åžengül MC, KiroÄŸlu Y (2016) 1H-magnetic resonance spectroscopy in first episode and chronic schizophrenia patients. Turkish J Med Sci 46:862–871

    Article  CAS  Google Scholar 

  • Kuhl DE, Koeppe RA, Fessler JA, Minoshima S, Ackermann RJ, Carey JE et al (1994) In vivo mapping of cholinergic neurons in the human brain using SPECT and IBVM. J Nucl Med 35:405–410

    CAS  PubMed  Google Scholar 

  • Lavalaye J, Booij J, Linszen D, Reneman L, van Royen E (2001) Higher occupancy of muscarinic receptors by olanzapine than risperidone in patients with schizophrenia. Psychopharmacology (Berl) 156:53–57

    Article  CAS  Google Scholar 

  • Lucatch AM, Lowe DJE, Clark RC, Kozak K, George TP (2018) Neurobiological determinants of tobacco smoking in schizophrenia. Front Psychiatry 9:672

    Article  PubMed  PubMed Central  Google Scholar 

  • Marutle A, Zhang X, Court J, Piggott M, Johnson M, Perry R et al (2001) Laminar distribution of nicotinic receptor subtypes in cortical regions in schizophrenia. J Chem Neuroanat 22:115–126

    Article  CAS  PubMed  Google Scholar 

  • McCluskey SP, Plisson C, Rabiner EA, Howes O (2019) Advances in CNS PET: the state-of-the-art for new imaging targets for pathophysiology and drug development. Eur J Nucl Med Mol Imaging 47:1–39

    Google Scholar 

  • Myles N, Newall HD, Curtis J, Nielssen O, Shiers D, Large M (2012) Tobacco use before, at, and after first-episode psychosis. J Clin Psychiatry 73:468–475

    Article  PubMed  Google Scholar 

  • Nejad-Davarani S, Koeppe RA, Albin RL, Frey KA, Müller MLTM, Bohnen NI (2019) Quantification of brain cholinergic denervation in dementia with Lewy bodies using PET imaging with [18F]-FEOBV. Mol Psychiatry 24:322–327

    Article  PubMed  Google Scholar 

  • Perälä J, Suvisaari J, Saarni SI, Kuoppasalmi K, Isometsä E, Pirkola S et al (2007) Lifetime prevalence of psychotic and bipolar I disorders in a general population. Arch Gen Psychiatry 64:19–28

    Article  PubMed  Google Scholar 

  • Petrou M, Frey KA, Kilbourn MR, Scott PJH, Raffel DM, Bohnen NI et al (2014) In vivo imaging of human cholinergic nerve terminals with (-)-5-(18)F-fluoroethoxybenzovesamicol: biodistribution, dosimetry, and tracer kinetic analyses. J Nucl Med. 55:396–404

    Article  CAS  PubMed  Google Scholar 

  • Plitman E, de la Fuente-Sandoval C, Reyes-Madrigal F, Chavez S, Gómez-Cruz G, León-Ortiz P et al (2016) Elevated myo-inositol, choline, and glutamate levels in the associative striatum of antipsychotic-naive patients with first-episode psychosis: a proton magnetic resonance spectroscopy study with implications for glial dysfunction. Schizophr Bull 42:415–424

    Article  PubMed  Google Scholar 

  • Raedler TJ (2007) Comparison of the in-vivo muscarinic cholinergic receptor availability in patients treated with clozapine and olanzapine. Int J Neuropsychopharmacol 10:275–280

    Article  CAS  PubMed  Google Scholar 

  • Raedler T, Knable MB, Jones DW, Lafargue T, Urbina RA, Egan MF et al (2000) In vivo olanzapine occupancy of muscarinic acetylcholine receptors in patients with schizophrenia. Neuropsychopharmacology 23:56–68

    Article  CAS  PubMed  Google Scholar 

  • Raedler TJ, Knable MB, Jones DW, Urbina RA, Gorey JG, Lee KS et al (2003a) In vivo determination of muscarinic acetylcholine receptor availability in schizophrenia. Am J Psychiatry 160:118–127

    Article  PubMed  Google Scholar 

  • Raedler TJ, Knable MB, Jones DW, Urbina RA, Egan MF, Weinberger DR (2003b) Central muscarinic acetylcholine receptor availability in patients treated with clozapine. Neuropsychopharmacology 28:1531–1537

    Article  CAS  PubMed  Google Scholar 

  • Raedler T, Bymaster F, Tandon R, Copolov D, Dean B (2007) Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry 12:232–246

    Article  CAS  PubMed  Google Scholar 

  • Remington G, Foussias G, Fervaha G, Agid O, Takeuchi H, Lee J et al (2016) Treating negative symptoms in schizophrenia: an update. Curr Treat Options Psychiatry 3:133–150

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan AE, Mowry BJ, Kesby JP, Scott JG, Greer JM (2019) Is there a role for antibodies targeting muscarinic acetylcholine receptors in the pathogenesis of schizophrenia? Aust New Zeal J Psychiatry 53:1059–1069

    Article  Google Scholar 

  • Santos B, González-Fraile E, Zabala A, Guillén V, Rueda JR, Ballesteros J (2018) Cognitive improvement of acetylcholinesterase inhibitors in schizophrenia. J Psychopharmacol 32:1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Sarter M, Parikh V (2005) Choline transporters, cholinergic transmission and cognition. Nat Rev Neurosci 6:48–56

    Article  CAS  PubMed  Google Scholar 

  • Scarr E, Keriakous D, Crossland N, Dean B (2006) No change in cortical muscarinic M2, M3 receptors or [35S]GTPγS binding in schizophrenia. Life Sci 78:1231–1237

    Article  CAS  PubMed  Google Scholar 

  • Scarr E, Cowie TF, Kanellakis S, Sundram S, Pantelis C, Dean B (2009) Decreased cortical muscarinic receptors define a subgroup of subjects with schizophrenia. Mol Psychiatry 14:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Shekhar A, Potter WZ, Lightfoot J, Lienemann J, Dubé S, Mallinckrodt C et al (2008) Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry 165:1033–1039

    Article  PubMed  Google Scholar 

  • Sofuoglu M, Mooney M (2009) Cholinergic functioning in stimulant addiction: implications for medications development. CNS Drugs 23:939–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tregellas J, Wylie K (2019) Alpha7 nicotinic receptors as therapeutic targets in schizophrenia. Nicotine Tob Res 21:349–356

    Article  PubMed  Google Scholar 

  • Veselinović T, Vernaleken I, Janouschek H, Kellermann T, Paulzen M, Cumming P et al (2015) Effects of anticholinergic challenge on psychopathology and cognition in drug-free patients with schizophrenia and healthy volunteers. Psychopharmacology 232:1607–1617

    Article  PubMed  CAS  Google Scholar 

  • Vingerhoets WAM, Bloemen OJN, Bakker G, van Amelsvoort TAMJ (2013) Pharmacological interventions for the MATRICS cognitive domains in schizophrenia: what’s the evidence? Front Psychiatry 4:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Vingerhoets C, Bakker G, van Dijk J, Bloemen OJN, Wang Y, Chan RCK et al (2017) The effect of the muscarinic M1 receptor antagonist biperiden on cognition in medication free subjects with psychosis. Eur Neuropsychopharmacol 27:854–864

    Article  CAS  PubMed  Google Scholar 

  • Vingerhoets C, Bakker G, Schrantee A, Van Der PM, OJN B, Reneman L et al (2019a) Influence of muscarinic M 1 receptor antagonism on brain choline levels and functional connectivity in medication-free subjects with psychosis: a placebo controlled, cross-over study. Psychiatry Res Neuroimaging 290:5–13

    Article  PubMed  Google Scholar 

  • Vingerhoets C, van Oudenaren MJF, Bloemen OJN, Boot E, van Duin EDA, Evers LJM et al (2019b) Low prevalence of substance use in people with 22q11.2 deletion syndrome. Br J Psychiatry 215:661–667

    Article  PubMed  Google Scholar 

  • Watanabe S, Nishikawa T, Takashima M, Toru M (1983) Increased muscarinic cholinergic receptors in prefrontal cortices of medicated schizophrenics. Life Sci 33:2187–2196

    Article  CAS  PubMed  Google Scholar 

  • Wong DF, Kuwabara H, Schretlen DJ, Bonson KR, Zhou Y, Nandi A et al (2006) Increased occupancy of dopamine receptors in human striatum during cue-elicited cocaine craving. Neuropsychopharmacology 31:2716–2727

    Article  CAS  PubMed  Google Scholar 

  • Wong DF, Kuwabara H, Pomper M, Holt DP, Brasic JR, George N et al (2014) Human brain imaging of α7 nAChR with [18F]ASEM: a new PET radiotracer for neuropsychiatry and determination of drug occupancy. Mol Imaging Biol 16:730–738

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong DF, Kuwabara H, Horti AG, Roberts JM, Nandi A, Cascella N et al (2018) Brain PET imaging of α7-nAChR with [18F]ASEM: reproducibility, occupancy, receptor density, and changes in schizophrenia. Int J Neuropsychopharmacol 21:656–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wüllner U, Gündisch D, Herzog H, Minnerop M, Joe A, Warnecke M et al (2008) Smoking upregulates α4β2* nicotinic acetylcholine receptors in the human brain. Neurosci Lett 430:34–37

    Article  PubMed  CAS  Google Scholar 

  • Zavitsanou K, Katerina Z, Katsifis A, Andrew K, Mattner F, Filomena M et al (2004) Investigation of m1/m4 muscarinic receptors in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression disorder. Neuropsychopharmacology 29:619–625

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Therese van Amelsvoort .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vingerhoets, C., Booij, J., van Amelsvoort, T. (2021). Acetylcholine Imaging in Psychosis. In: Dierckx, R.A., Otte, A., de Vries, E.F.J., van Waarde, A., Sommer, I.E. (eds) PET and SPECT in Psychiatry. Springer, Cham. https://doi.org/10.1007/978-3-030-57231-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57231-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57230-3

  • Online ISBN: 978-3-030-57231-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics