Skip to main content

Dopamine and Response to Antipsychotic Medication

  • Chapter
  • First Online:
PET and SPECT in Psychiatry

Abstract

The precise molecular basis of schizophrenia is not completely understood. In this chapter, we will describe and examine the evidence from PET and SPECT imaging findings on the key role that dopamine, the neurotransmitter most strongly associated with schizophrenia, plays in its pathophysiology. We will review the evidence for presynaptic dopamine pathway dysfunction, which is most apparent in the associative striatum and involves abnormal elevations of dopamine synthetic capacity, dopamine release and synaptic dopamine levels. This dysfunction is well correlated with the increased likelihood, onset and worsening severity of schizophrenia. Furthermore, this association appears to be crucial in relation to the therapeutic response to dopamine antagonists.

Here, in addition we review the evidence for the mechanism of action of current antipsychotics, by examining the roles that pre- and postsynaptic dopamine modulation play in their clinical efficacy. Furthermore treatment resistance, current understanding about its neurological underpinnings and treatment strategies will be outlined. Finally, we explore the dopamine and non-dopaminergic mechanisms of potential novel therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abekawa T, Ito K, Koyama T (2006) Role of the simultaneous enhancement of NMDA and dopamine D1 receptor-mediated neurotransmission in the effects of clozapine on phencyclidine-induced acute increases in glutamate levels in the rat medial prefrontal cortex. Naunyn Schmiedeberg’s Arch Pharmacol 374(3):177–193

    Article  CAS  Google Scholar 

  • Abekawa T, Ito K, Koyama T (2007) Different effects of a single and repeated administration of clozapine on phencyclidine-induced hyperlocomotion and glutamate releases in the rat medial prefrontal cortex at short- and long-term withdrawal from this antipsychotic. Naunyn Schmiedeberg’s Arch Pharmacol 375(4):261–271

    Article  CAS  Google Scholar 

  • Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M et al (1998) Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 155(6):761–767

    CAS  PubMed  Google Scholar 

  • Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS et al (2000) Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci U S A 97(14):8104–8109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y et al (2002) Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 22(9):3708–3719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abi-Dargham A, Kegeles LS, Zea-Ponce Y, Mawlawi O, Martinez D, Mitropoulou V et al (2004) Striatal amphetamine-induced dopamine release in patients with schizotypal personality disorder studied with single photon emission computed tomography and [123I] iodobenzamide. Biol Psychiatry 55(10):1001–1006

    Article  CAS  PubMed  Google Scholar 

  • Abi-Dargham A, Xu X, Thompson JL, Gil R, Kegeles LS, Urban N et al (2012) Increased prefrontal cortical D1 receptors in drug naïve patients with schizophrenia: A PET study with [11C]NNC112. J Psychopharmacol 26(6):794–805

    Article  PubMed  CAS  Google Scholar 

  • Agid O, Kapur S, Arenovich T, Zipursky RB (2003) Delayed-onset hypothesis of antipsychotic action: a hypothesis tested and rejected. Arch Gen Psychiatry 60(12):1228–1235

    Article  CAS  PubMed  Google Scholar 

  • Agid O, Foussias G, Singh S, Remington G (2010) Where to position clozapine: re-examining the evidence. Can J Psychiatry 55:677–684

    Article  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271

    Article  CAS  PubMed  Google Scholar 

  • Amato D, Natesan S, Yavich L, Kapur S, Muller CP (2011) Dynamic regulation of dopamine and serotonin responses to salient stimuli during chronic haloperidol treatment. Int J Neuropsychopharmacol 14(10):1327–1339

    Article  CAS  PubMed  Google Scholar 

  • Amato D, Vernon AC, Papaleo F (2017) Dopamine, the antipsychotic molecule: a perspective on mechanisms underlying antipsychotic response variability. Neurosci Biobehav Rev 85:146–159

    Article  PubMed  CAS  Google Scholar 

  • Amato D, Canneva F, Cumming P, Maschauer S, Groos D, Wrosch JK et al (2018) A dopaminergic mechanism of antipsychotic drug efficacy, failure, and failure reversal: the role of the dopamine transporter. Mol Psychiatry. https://doi.org/10.1038/s41380-018-0114-5

  • Amato D, Kruyer A, Samaha A-N, Heinz A (2019) Hypofunctional dopamine uptake and antipsychotic treatment-resistant schizophrenia. Front Psychiatry 10:1–18

    Article  Google Scholar 

  • Ascher-Svanum H, Nyhuis AW, Faries DE, Kinon BJ, Baker RW, Shekhar A (2007) Clinical, functional, and economic ramifications of early nonresponse to antipsychotics in the naturalistic treatment of schizophrenia. Schizophr Bull 34(6):1163–1171

    Article  PubMed  PubMed Central  Google Scholar 

  • Averbeck BB, Lehman J, Jacobson M, Haber SN (2014) Estimates of projection overlap and zones of convergence within frontal-striatal circuits. J Neurosci 34(29):9497–9505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avram M, Brandl F, Cabello J, Leucht C, Scherr M, Mustafa M et al (2019) Reduced striatal dopamine synthesis capacity in patients with schizophrenia during remission of positive symptoms. Brain 142(6):1813–1826

    Article  PubMed  Google Scholar 

  • Berman SM, Kuczenski R, McCracken JT, London ED (2009) Potential adverse effects of amphetamine treatment on brain and behavior: a review. Mol Psychiatry 14(2):123–142

    Article  CAS  PubMed  Google Scholar 

  • Bird ED, Spokes EG, Iversen LL (1979) Increased dopamine concentration in limbic areas of brain from patients dying with schizophrenia. Brain 102(2):347–360

    Article  CAS  PubMed  Google Scholar 

  • Bogerts B, Häntsch J, Herzer M (1983) A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics. Biol Psychiatry 18(9):951–969

    CAS  PubMed  Google Scholar 

  • Bozymski KM, Lowe DK, Pasternak KM, Gatesman TL, Crouse EL (2017) Pimavanserin: a novel antipsychotic for Parkinson’s disease psychosis. Ann Pharmacother 51(6):479–487

    Article  CAS  PubMed  Google Scholar 

  • Braun M (2006) Reserpine as a therapeutic agent in schizophrenia. Am J Psychiatry 116:744–745

    Article  Google Scholar 

  • Brugger SP, Angelescu I, Abi-Dargham A, Mizrahi R, Shahrezaei V, Howes OD (2019) Heterogeneity of striatal dopamine function in schizophrenia: meta-analysis of variance. Biol Psychiatry. https://linkinghub.elsevier.com/retrieve/pii/S0006322319315410. Accessed 01 August 2019

  • Buchanan RW, Kreyenbuhl J, Kelly DL, Noel JM, Boggs DL, Fischer BA et al (2010) The 2009 schizophrenia PORT psychopharmacological treatment recommendations and summary statements. Schizophr Bull 36:71–93

    Article  PubMed  Google Scholar 

  • Bunney BS, Walters JR, Roth RH, Aghajanian GK (1973) Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther 185(3):560–571

    CAS  PubMed  Google Scholar 

  • Caravaggio F, Iwata Y, Kim J, Shah P, Gerretsen P, Remington G et al (2019) What proportion of striatal D2 receptors are occupied by endogenous dopamine at baseline? A meta-analysis with implications for understanding antipsychotic occupancy. Neuropharmacology 163:1–9

    Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on the formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol (Copenh) 20:140–144

    Article  CAS  Google Scholar 

  • Carlsson A, Lindqvist M, Magnusson T (1957) 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180:1200

    Article  CAS  PubMed  Google Scholar 

  • Carlsson A, Waters N, Waters S, Carlsson ML (2000) Network interactions in schizophrenia: therapeutic implications. Brain Res Rev 31:342–349

    Article  CAS  PubMed  Google Scholar 

  • Carlsson A, Waters N, Hom-Waters S, Tedroff K, Nilsson M, Carlsson ML (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237–260

    Article  CAS  PubMed  Google Scholar 

  • Catafau AM, Corripio I, Perez V, Martin JC, Schotte A, Carrio I et al (2006) Dopamine D2 receptor occupancy by risperidone: implications for the timing and magnitude of clinical response. Psychiatry Res 148(2–3):175–183

    Article  CAS  PubMed  Google Scholar 

  • Chakos M, Lieberman J, Hoffman E, Bradford D, Sheitman B (2001) Effectiveness of second-generation antipsychotics in patients with treatment-resistant schizophrenia: a review and meta-analysis of randomized trials. Am J Psychiatry 158:518–526

    Article  CAS  PubMed  Google Scholar 

  • Charpentier P, Gailliot P, Jacob R, Gaudechon J, Buisson P (1952) Recherches sur les diméthylaminopropyl-N phénothiazines substituées. C R Hebdo Seances Acad Sci 235(1):59–60

    CAS  Google Scholar 

  • Chen KC, Yang YK, Howes O, Lee IH, Landau S, Yeh TL et al (2011) Striatal dopamine transporter availability in drug-naive patients with schizophrenia: a case-control SPECT study with [99mTc]-TRODAT-1 and a meta-analysis. Schizophr Bull 39(2):378–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhatlani A, Farheen SA, Setty MJ, Tampi RR (2018) Use of cariprazine in psychiatric disorders: a systematic review. Ann Clin Psychiatry 30(4):326–334. https://www.aacp.com/article/buy_now/?id=557. Accessed 16 September 2019

    PubMed  Google Scholar 

  • Chiodo LA, Bunney BS (1983) Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. J Neurosci 3(8):1607–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung K, Deisseroth K (2013) Clarity for mapping the nervous system. Nat Methods 10(6):508

    Article  CAS  PubMed  Google Scholar 

  • Connell PH (1957) Amphetamine psychosis. Br Med J 1(5018):582. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1974659/. Accessed 2 August 2019

    Article  PubMed Central  Google Scholar 

  • Coppens HJ, Slooff CJ, Paans AM, Wiegman T, Vaalburg W, Korf J (1991) High central D2-dopamine receptor occupancy as assessed with positron emission tomography in medicated but therapy-resistant schizophrenic patients. Biol Psychiatry 29(7):629–634

    Article  CAS  PubMed  Google Scholar 

  • Correll CU, Potkin SG, Zhong Y, Harsányi J, Szatmári B, Earley W (2019) Long-term remission with cariprazine treatment in patients with schizophrenia: a post hoc analysis of a randomized, double-blind, placebo-controlled, relapse prevention trial. J Clin Psychiatry 80(2):1–7

    Article  Google Scholar 

  • Corrigan MH, Gallen CC, Bonura ML, Merchant KM (2004) Sonepiprazole study group. Effectiveness of the selective D4 antagonist sonepiprazole in schizophrenia: a placebo-controlled trial. Biol Psychiatry 55(5):445–451

    Article  CAS  PubMed  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    Article  CAS  PubMed  Google Scholar 

  • Crilly J (2007) The history of clozapine and its emergence in the US market: a review and analysis. Hist Psychiatry 18(1):39–60

    Article  PubMed  Google Scholar 

  • Cross AJ, Crow TJ, Owen F (1981) 3H-flupenthixol binding in post-mortem brains of schizophrenics: evidence for a selective increase in dopamine D2 receptors. Psychopharmacology 74(2):122–124

    Article  CAS  PubMed  Google Scholar 

  • Csernansky JG, Bellows EP, Barnes DE, Lombrozo L (1990) Sensitization versus tolerance to the dopamine turnover-elevating effects of haloperidol: the effect of regular/intermittent dosing. Psychopharmacology 101:519–524

    Article  CAS  PubMed  Google Scholar 

  • Curran C, Byrappa N, McBride A (2004) Stimulant psychosis: systematic review. Br J Psychiatry 185:196–204

    Article  PubMed  Google Scholar 

  • Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486

    Article  CAS  PubMed  Google Scholar 

  • Debelle M, Faradzs-Zade S, Szatmari B, Nagy K, Nemeth G, Durgam S et al (2015) Cariprazine in negative symptoms of schizophrenia: post-hoc analyses of a fixed-dose phase III, randomized, double-blind, placebo-and active-controlled trial. Eur Psychiatry 30:242

    Article  Google Scholar 

  • Delay J, Deniker P, Harl JM (1952) Therapeutic use in psychiatry of phenothiazine of central elective action (4560 RP). Ann Med Psychol (Paris) 110:112–117

    CAS  Google Scholar 

  • Demjaha A (2018) On the brink of precision medicine for psychosis: treating the patient, not the disease: a commentary on: association between serum levels of glutamate and neurotrophic factors and response to clozapine treatment by Krivoy et al. 2017. Schizophr Res 193:487–488

    Article  PubMed  Google Scholar 

  • Demjaha A, Murray RM, McGuire PK, Kapur S, Howes OD (2012) Dopamine synthesis capacity in patients with treatment-resistant schizophrenia. Am J Psychiatry 169(11):1203–1210

    Article  PubMed  Google Scholar 

  • Demjaha A, Egerton A, Murray RM, Kapur S, Howes OD, Stone JM et al (2014) Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function. Biol Psychiatry 75(5):e11–e13

    Article  CAS  PubMed  Google Scholar 

  • Demjaha A, Lappin JM, Stahl D, Patel MX, MacCabe JH, Howes OD et al (2017) Antipsychotic treatment resistance in first-episode psychosis: prevalence, subtypes and predictors. Psychol Med 47(11):1981–1989

    Article  CAS  PubMed  Google Scholar 

  • Dickinson SD, Sabeti J, Larson GA, Giardina K, Rubinstein M, Kelly MA et al (1999) Dopamine D2 receptor-deficient mice exhibit decreased dopamine transporter function but no changes in dopamine release in dorsal striatum. J Neurochem 72(1):148–156

    Article  CAS  PubMed  Google Scholar 

  • Downing AM, Kinon BJ, Millen BA, Zhang L, Liu L, Morozova MA et al (2014) A double-blind, placebo-controlled comparator study of LY2140023 monohydrate in patients with schizophrenia. BMC Psychiatry 14(1):351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duncan E, Wolkin A, Angrist B, Sanfilipo M, Wieland S, Cooper TB et al (1993) Plasma homovanillic acid in neuroleptic responsive and nonresponsive schizophrenics. Biol Psychiatry 34:523–528

    Article  CAS  PubMed  Google Scholar 

  • Dutta R, Greene T, Addington J, McKenzie K, Phillips M, Murray RM (2007) Biological, life course, and cross-cultural studies all point toward the value of dimensional and developmental ratings in the classification of psychosis. Schizophr Bull 33:868–876

    Article  PubMed  PubMed Central  Google Scholar 

  • Egerton A, Hirani E, Ahmad R, Turton DR, Brickute D, Rosso L et al (2010) Further evaluation of the carbon11-labeled D2/3 agonist PET radiotracer PHNO: Reproducibility in tracer characteristics and characterization of extrastriatal binding. Synapse 64(4):301–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egerton A, Fusar-Poli P, Stone JM (2012) Glutamate and psychosis risk. Curr Pharm Des 18:466–478

    Article  CAS  PubMed  Google Scholar 

  • Egerton A, Chaddock CA, Winton-Brown TT, Bloomfield MAP, Bhattacharyya S, Allen P et al (2013) Presynaptic striatal dopamine dysfunction in people at ultra-high risk for psychosis: findings in a second cohort. Biol Psychiatry 74(2):106–112

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg DP, Yankowitz L, Ianni AM, Rubinstein DY, Kohn PD, Hegarty CE et al (2017) Presynaptic dopamine synthesis capacity in schizophrenia and striatal blood flow change during antipsychotic treatment and medication-free conditions. Neuropsychopharmacology 42(11):2232–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekelund J, Slifstein M, Narendran R, Guillin O, Belani H, Guo NN et al (2007) In vivo DA D 1 receptor selectivity of NNC 112 and SCH 23390. Mol Imaging Biol 9(3):117

    Article  PubMed  Google Scholar 

  • Ekesbo A, Rydin E, Torstenson R, Sydow O, Låengström B, Tedroff J (1999) Dopamine autoreceptor function is lost in advanced Parkinson’s disease. Neurology 52:120–125

    Article  CAS  PubMed  Google Scholar 

  • Elkis H (2007) Treatment-resistant schizophrenia. Psychiatric Clin 30:511–533

    Google Scholar 

  • Ernst M, Zametkin AJ, Matochik JA, Pascualvaca D, Cohen RM (1997) Low medial prefrontal dopaminergic activity in autistic children. Lancet 350:638

    Article  CAS  PubMed  Google Scholar 

  • Eshel N, Tian J (2014) Dopamine gates sensory representations in cortex. J Neurophysiol 111(11):2161–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Essock SM, Hargreaves WA, Covell NH, Goethe J (1996) Clozapine’s effectiveness for patients in state hospitals: results from a randomized trial. Psychopharmacol Bull 32:683–697. https://www.ncbi.nlm.nih.gov/pubmed/8993092. Accessed 21 September 2019

    CAS  PubMed  Google Scholar 

  • Farde L, Wiesel FA, Nordström AL, Sedvall G (1989) D1-and D2-dopamine receptor occupancy during treatment with conventional and atypical neuroleptics. Psychopharmacology 99(1):S28–S31

    Article  PubMed  Google Scholar 

  • Farde L, Wiesel FA, Stone-Elander S, Halldin C, Nordström AL, Hall H et al (1990) D2 dopamine receptors in neuroleptic-naive schizophrenic patients: a positron emission tomography study with [11C] raclopride. Arch Gen Psychiatry 47(3):213–219

    Article  CAS  PubMed  Google Scholar 

  • Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G (1992) Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine: relation to extrapyramidal side effects. Arch Gen Psychiatry 49:538–544

    Article  CAS  PubMed  Google Scholar 

  • Freedman SB, Patel S, Marwood R, Emms F, Seabrook GR, Knowles MR et al (1994) Expression and pharmacological characterization of the human D3 dopamine receptor. J Pharmacol Exp Ther 268:417–426. http://jpet.aspetjournals.org/content/268/1/417.long. Accessed 15 September 2019

    CAS  PubMed  Google Scholar 

  • Fusar-Poli P, Meyer-Lindenberg A (2013a) Striatal presynaptic dopamine in schizophrenia, part i: meta-analysis of dopamine active transporter (DAT) density. Schizophr Bull 39(1):22–32

    Article  PubMed  Google Scholar 

  • Fusar-Poli P, Meyer-Lindenberg A (2013b) Striatal presynaptic dopamine in schizophrenia, part II: meta-analysis of [18F/11C]-DOPA PET studies. Schizophr Bull 39(1):33–42

    Article  PubMed  Google Scholar 

  • Fusar-Poli P, Howes OD, Allen P, Broome M, Valli I, Asselin MC et al (2010) Abnormal frontostriatal interactions in people with prodromal signs of psychosis: a multimodal imaging study. Arch Gen Psychiatry 67(7):683–691

    Article  PubMed  Google Scholar 

  • Gefvert O, Bergstrom M, Langstrom B, Lundberg T, Lindstrom L, Yates R (1998) Time course of central nervous dopamine-D-2 and 5-HT2 receptor blockade and plasma drug concentrations after discontinuation of quetiapine (Seroquel) in patients with schizophrenia. Psychopharmacology 135:119–126

    Article  CAS  PubMed  Google Scholar 

  • George MS, Molnar CE, Grenesko EL, Anderson B, Mu Q, Johnson K et al (2007) A single 20 mg dose of dihydrexidine (DAR-0100), a full dopamine D1 agonist, is safe and tolerated in patients with schizophrenia. Schizophr Res 93(1–3):42–50

    Article  PubMed  Google Scholar 

  • Gillespie AL, Samanaite R, Mill J, Egerton A, MacCabe JH (2017) Is treatment-resistant schizophrenia categorically distinct from treatment-responsive schizophrenia? A systematic review. BMC Psychiatry 17(1):12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ginovart N, Wilson AA, Hussey D, Houle S, Kapur S (2009) D2-receptor upregulation is dependent upon temporal course of D2-occupancy: a longitudinal [11C]-raclopride PET study in cats. Neuropsychopharmacology 34:662–671

    Article  CAS  PubMed  Google Scholar 

  • Girgis RR, Slifstein M, D’Souza D, Lee Y, Periclou A, Ghahramani P et al (2016a) Preferential binding to dopamine D3 over D2 receptors by cariprazine in patients with schizophrenia using PET with the D3/D2 receptor ligand [(11)C]-(+)-PHNO. Psychopharmacology 233:3503–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girgis RR, Van Snellenberg JX, Glass A, Kegeles LS, Thompson JL, Wall M et al (2016b) A proof-of-concept, randomized controlled trial of DAR-0100A, a dopamine-1 receptor agonist, for cognitive enhancement in schizophrenia. J Psychopharmacol 30(5):428–435

    Article  CAS  PubMed  Google Scholar 

  • Girgis RR, Zoghbi AW, Javitt DC, Lieberman JA (2019) The past and future of novel, non-dopamine-2 receptor therapeutics for schizophrenia: a critical and comprehensive review. J Psychiatr Res 108:57–83

    Article  PubMed  Google Scholar 

  • Goldman-Rakic PS (1994) Working memory dysfunction in schizophrenia. The Frontal Lobes and Neuropsychiatric Illness. American Psychiatric Publishing, Washington, DC, pp 71–82

    Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41(1):1–24

    Article  CAS  PubMed  Google Scholar 

  • Grace AA, Bunney BS, Moore H, Todd CL (1997) Dopamine-cell depolarization block as a model for the therapeutic actions of antipsychotic drugs. Trends Neurosci 20:31–37

    Article  CAS  PubMed  Google Scholar 

  • Graff-Guerrero A, Mizrahi R, Agid O, Marcon H, Barsoum P, Rusjan P et al (2009a) The dopamine D2 receptors in high-affinity state and D3 receptors in schizophrenia: a clinical [11C]-(+)-PHNO PET study. Neuropsychopharmacology 34(4):1078–1086

    Article  CAS  PubMed  Google Scholar 

  • Graff-Guerrero A, Mamo D, Shammi CM, Mizrahi R, Marcon H, Barsoum P et al (2009b) The effect of antipsychotics on the high-affinity state of D2 and D3 receptors: a positron emission tomography study with [11C]-(+)-PHNO. Arch Gen Psychiatr 66:606–615

    Article  CAS  PubMed  Google Scholar 

  • Gross G, Drescher K (2012) The role of dopamine d3 receptors in antipsychotic activity and cognitive functions. In: Geyer M, Gross G (eds) Novel antischizophrenia treatments. Handbook of experimental pharmacology. Springer, Berlin, Heidelberg, pp 167–210

    Chapter  Google Scholar 

  • Gründer G, Vernaleken I, Muller MJ, Davids E, Heydari N, Buchholz HG et al (2003) Subchronic haloperidol downregulates dopamine synthesis capacity in the brain of schizophrenic patients in vivo. Neuropsychopharmacology 28(4):787–794

    Article  PubMed  CAS  Google Scholar 

  • Gründer G, Fellows C, Janouschek H, Veselinovic T, Boy C, Bröcheler A et al (2008) Brain and plasma pharmacokinetics of aripiprazole in patients with schizophrenia: an [18 F] fallypride PET study. Am J Psychiatry 165:988–995

    Article  PubMed  Google Scholar 

  • Gurevich EV, Joyce JN (1999) Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacology 20:60–80

    Article  CAS  PubMed  Google Scholar 

  • Gyertyán I, Sághy K (2004) Effects of dopamine D3 receptor antagonists on spontaneous and agonist-reduced motor activity in NMRI mice and Wistar rats: comparative study with nafadotride, U 99194A and SB 277011. Behav Pharmacol 15:253–262

    Article  PubMed  Google Scholar 

  • Harrison J, Janlöv M, Wheeler AJ (2010) Patterns of clozapine prescribing in a mental health service in New Zealand. Pharm World Sci 32(4):503–511

    Article  PubMed  Google Scholar 

  • Hasan A, Falkai P, Wobrock T, Lieberman J, Glenthoj B, Gattaz WF et al (2012) World federation of societies of biological psychiatry (WFSBP) guidelines for biological treatment of schizophrenia, part 1: update 2012 on the acute treatment of schizophrenia and the management of treatment resistance. World J Bio Psychiatry 13:318–378

    Article  Google Scholar 

  • Healy D (2009) The creation of psychopharmacology. Harvard Univ, London, pp 9–128

    Google Scholar 

  • Heinrichs RW, Zakzanis KK (1998) Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology 12(3):426–445

    Article  CAS  PubMed  Google Scholar 

  • Heinz A (2002) Dopaminergic dysfunction in alcoholism and schizophrenia—psychopathological and behavioral correlates. Eur Psychiatry 17(1):9–16

    Article  CAS  PubMed  Google Scholar 

  • Hengartner MP, Moncrieff J (2018) Inconclusive evidence in support of the dopamine hypothesis of psychosis: why neurobiological research must consider medication use, adjust for important confounders, choose stringent comparators, and use larger samples. Front Psych 9:8–11

    Google Scholar 

  • Hill AB (1965) The environment and disease: association or causation? Proc R Soc Med 58:295–300. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1898525/. Accessed 01 August 2019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ho BC, Nopoulos P, Flaum M, Arndt S, Andreasen NC (1998) Two-year outcome in first-episode schizophrenia: predictive value of symptoms for quality of life. Am J Psychiatry 155(9):1196–1201

    Article  CAS  PubMed  Google Scholar 

  • Horn AS, Post ML, Kennard O (1975) Dopamine receptor blockade and the neuroleptics, a crystallographic study. J Pharm Pharmacol 27(8):553–563

    Article  CAS  PubMed  Google Scholar 

  • Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III - the final common pathway. Schizophr Bull 35(3):549–562

    Article  PubMed  PubMed Central  Google Scholar 

  • Howes OD, Kapur S (2014) A neurobiological hypothesis for the classification of schizophrenia: type a (hyperdopaminergic) and type B (normodopaminergic). Br J Psychiatry 205:1–3

    Article  PubMed  Google Scholar 

  • Howes OD, Murray RM (2014) Schizophrenia: an integrated sociodevelopmental-cognitive model. Lancet 383(9929):1677–1687

    Article  PubMed  Google Scholar 

  • Howes OD, Montgomery AJ, Asselin MC, Murray RM, Valli I, Tabraham P et al (2009) Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry 66(1):13–20

    Article  PubMed  Google Scholar 

  • Howes O, Bose S, Turkheimer F, Valli I, Egerton A, Stahl D et al (2011) Progressive increase in striatal dopamine synthesis capacity as patients develop psychosis: a PET study. Mol Psychiatry 16(9):885–886

    Article  CAS  PubMed  Google Scholar 

  • Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A et al (2012) The nature of dopamine dysfunction in schizophrenia and what this means for treatment: meta-analysis of imaging studies. Arch Gen Psychiatry 69(8):776–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howes OD, Williams M, Ibrahim K, Leung G, Egerton A, McGuire PK et al (2013) Midbrain dopamine function in schizophrenia and depression: a post-mortem and positron emission tomographic imaging study. Brain 136(11):3242–3251

    Article  PubMed  PubMed Central  Google Scholar 

  • Howes OD, McCutcheon R, Agid O, De Bartolomeis A, Van Beveren NJ, Birnbaum ML et al (2016) Treatment-resistant schizophrenia: treatment response and resistance in psychosis (TRRIP) working group consensus guidelines on diagnosis and terminology. Am J Psychiatry 174(3):216–229

    Article  PubMed  PubMed Central  Google Scholar 

  • Humbert-Claude M, Davenas E, Gbahou F, Vincent L, Arrang JM (2012) Involvement of histamine receptors in the atypical antipsychotic profile of clozapine: a reassessment in vitro and in vivo. Psychopharmacology (Berlin) 220:225–241

    Article  CAS  Google Scholar 

  • Hunnicutt BJ, Jongbloets BC, Birdsong WT, Gertz KJ, Zhong H, Mao T (2016) A comprehensive excitatory input map of the striatum reveals novel functional organization. eLife 5:e19103

    Article  PubMed  PubMed Central  Google Scholar 

  • Huttunen J, Heinimaa M, Svirskis T, Nyman M, Kajander J, Forsback S et al (2008) Striatal dopamine synthesis in first-degree relatives of patients with schizophrenia. Biol Psychiatry 63(1):114–117

    Article  CAS  PubMed  Google Scholar 

  • Iasevoli F, Giordano S, Balletta R, Latte G, Formato MV, Prinzivalli E et al (2016) Treatment resistant schizophrenia is associated with the worst community functioning among severely-ill highly-disabling psychiatric conditions and is the most relevant predictor of poorer achievements in functional milestones. Prog Neuro-Psychopharmacol Biol Psychiatry 65:34–48

    Article  Google Scholar 

  • Idanpaan-Heikkila J, Alhava E, Olkinuora M, Palva IP (1975) Clozapine and agranulocytosis. Lancet 2(7935):611

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Takano H, Takahashi H, Arakawa R, Miyoshi M, Kodaka F et al (2009) Effects of the antipsychotic risperidone on dopamine synthesis in human brain measured by positron emission tomography with L-[beta-11C]DOPA: a stabilizing effect for dopaminergic neurotransmission? J Neurosci 29(43):13730–13734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iversen LL, Rogawski MA, Miller RJ (1976) Comparison of the effects of neuroleptic drugs on pre- and postsynaptic dopaminergic mechanisms in the rat striatum. Mol Pharmacol 12(2):251–262. http://molpharm.aspetjournals.org/content/12/2/251.short. Accessed 15 September 2019

    CAS  PubMed  Google Scholar 

  • Iwata Y, Nakajima S, Plitman E, Caravaggio F, Kim J, Shah P et al (2019) Glutamatergic neurometabolite levels in patients with ultra-treatment-resistant schizophrenia: a cross-sectional 3T proton magnetic resonance spectroscopy study. Biol Psychiatry 85(7):596–605

    Article  CAS  PubMed  Google Scholar 

  • Jarskog LF, Lowy MT, Grove RA, Keefe RS, Horrigan JP, Ball MP et al (2015) A phase II study of a histamine H3 receptor antagonist GSK239512 for cognitive impairment in stable schizophrenia subjects on antipsychotic therapy. Schizophr Res 164(1–3):136–142

    Article  PubMed  Google Scholar 

  • Jauhar S, Nour MM, Veronese M, Rogdaki M, Bonoldi I, Azis M et al (2017a) A test of the transdiagnostic dopamine hypothesis of psychosis using positron emission tomographic imaging in bipolar affective disorder and schizophrenia. JAMA Psychiat 74(12):1206–1213

    Article  Google Scholar 

  • Jauhar S, Veronese M, Rogdaki M, Bloomfield M, Natesan S, Turkheimer F et al (2017b) Regulation of dopaminergic function: an [18 F]-DOPA PET apomorphine challenge study in humans. Transl Psychiatry 7(2):e1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jauhar S, McCutcheon R, Borgan F, Veronese M, Nour M, Pepper F et al (2018a) The relationship between cortical glutamate and striatal dopamine in first-episode psychosis: a cross-sectional multimodal PET and magnetic resonance spectroscopy imaging study. Lancet Psychiatry 5(10):816–823

    Article  PubMed  PubMed Central  Google Scholar 

  • Jauhar S, Veronese M, Nour MM, Rogdaki M, Hathway P, Turkheimer FE et al (2018b) Determinants of treatment response in first-episode psychosis: an 18 F-DOPA PET study. Mol Psychiatry 24:1502–1512

    Article  PubMed  PubMed Central  Google Scholar 

  • Jauhar S, Veronese M, Nour MM, Rogdaki M, Hathway P, Natesan S et al (2019) The effects of antipsychotic treatment on presynaptic dopamine synthesis capacity in first-episode psychosis: a positron emission tomography study. Biol Psychiatry 85(1):79–87

    Article  CAS  PubMed  Google Scholar 

  • Jones SR, Gainetdinov RR, Jaber M, Giros B, Wightman RM, Caron MG (1998) Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc Natl Acad Sci U S A 95(7):4029–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones C, Kapur S, Remington G, Zipursky RB (2000) Transient dopamine D2 occupancy in low EPS-incidence drugs: PET evidence (abstract). Biol Psychiatry 47(8 suppl):112

    Article  Google Scholar 

  • Jones PB, Barnes TR, Davies L, Dunn G, Lloyd H, Hayhurst KP et al (2006) Randomized controlled trial of the effect on Quality of Life of second-vs first-generation antipsychotic drugs in schizophrenia: cost utility of the latest antipsychotic drugs in schizophrenia study (CUtLASS 1). Arch Gen Psychiatry 63(10):1079–1087

    Article  CAS  PubMed  Google Scholar 

  • Kaar SJ, Natesan S, McCutcheon R, Howes OD (2019) Antipsychotics: mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology 172:107,704

    Article  CAS  Google Scholar 

  • Kahn RS, van Rossum IW, Leucht S, McGuire P, Lewis SW, Leboyer M et al (2018) Amisulpride and olanzapine followed by open-label treatment with clozapine in first-episode schizophrenia and schizophreniform disorder (OPTiMiSE): a three-phase switching study. Lancet Psychiatry 5(10):797–807

    Article  PubMed  Google Scholar 

  • Kane JM, Correll CU (2016) The role of clozapine in treatment-resistant schizophrenia. JAMA Psychiat 73(3):187–188

    Article  Google Scholar 

  • Kane K, Honigfeld G, Singer J, Meltzer H (1988) Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Ach Gen Psychiatry 45:789–796

    Article  CAS  Google Scholar 

  • Kane JM, Zukin S, Wang Y, Lu K, Ruth A, Nagy K et al (2015) Efficacy and safety of cariprazine in acute exacerbation of schizophrenia: results from an international, phase III clinical trial. J Clin Psychopharmacol 35(4):367–373

    Article  CAS  PubMed  Google Scholar 

  • Kapur S (2003) Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 160(1):13–23

    Article  PubMed  Google Scholar 

  • Kapur S, Mamo D (2003) Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry 27(7):1081–1090

    Article  CAS  PubMed  Google Scholar 

  • Kapur S, Seeman P (2000) Antipsychotic agents differ in how fast they come off the dopamine D2 receptors. Implications for atypical antipsychotic action. J Psychiatry Neurosci 25(2):161–166. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1408069/. Accessed 01 September 2019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kapur S, Seeman P (2001) Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics?: A new hypothesis. Am J Psychiatry 158(3):360–369

    Article  CAS  PubMed  Google Scholar 

  • Kapur S, Remington G, Zipursky RB, Wilson AA, Houle S (1995) The D2 dopamine receptor occupancy of risperidone and its relationship to extrapyramidal symptoms: a PET study. Life Sci 57(10):L103–L107

    Article  Google Scholar 

  • Kapur S, Zipursky RB, Remington G, Jones C, DaSilva J, Wilson AA et al (1998) 5-HT2 and D2 receptor occupancy of olanzapine in schizophrenia: a PET investigation. Am J Psychiatry 155:921–928

    Article  CAS  PubMed  Google Scholar 

  • Kapur S, Zipursky RB, Remington G (1999) Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am J Psychiatry 156(2):286–293

    Article  CAS  PubMed  Google Scholar 

  • Kapur S, Zipursky R, Jones C, Remington G, Houle S (2000) Relationship between dopamine D2 occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry 157(4):514–520

    Article  CAS  PubMed  Google Scholar 

  • Kapur S, Zipursky R, Jones C, Shammi CS, Remington G, Seeman P (2000b) A positron emission tomography study of quetiapine in schizophrenia: a preliminary finding of an antipsychotic effect with only transiently high dopamine D2 receptor occupancy. Arch Gen Psychiatry 57:553–559

    Article  CAS  PubMed  Google Scholar 

  • Kapur S, Sridhar N, Remington G (2004) The newer antipsychotics: underlying mechanisms and the new clinical realities. Curr Opin Psychiatr 17:115–121

    Article  Google Scholar 

  • Kapur S, Mizrahi R, Li M (2005a) From dopamine to salience to psychosis - linking biology, pharmacology and phenomenology of psychosis. Schizophr Res 79(1):59–68

    Article  PubMed  Google Scholar 

  • Kapur S, Arenovich T, Agid O, Zipursky R, Lindborg S, Jones B (2005b) Evidence for onset of antipsychotic effects within the first 24 hours of treatment. Am J Psychiatry 162:939–946

    Article  PubMed  Google Scholar 

  • Karlsson P, Farde L, Härnryd C, Sedvall G, Smith L, Wiesel FA (1995) Lack of apparent antipsychotic effect of the D 1-dopamine receptor antagonist SCH39166 in acutely ill schizophrenic patients. Psychopharmacology 121(3):309–316

    Article  CAS  PubMed  Google Scholar 

  • Karlsson P, Farde L, Halldin C, Sedvall G (2002) PET study of D1 dopamine receptor binding in neuroleptic-naive patients with schizophrenia. Am J Psychiatry 159(5):761–767

    Article  PubMed  Google Scholar 

  • Kashihara K, Sato M, Fujiwara Y, Harada T, Ogawa T, Otsuki S (1986) Effects of intermittent and continuous haloperidol administration on the dopaminergic system in the rat brain. Biol Psychiatry 21:650–656

    Article  CAS  PubMed  Google Scholar 

  • Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13(2):261–276

    Article  CAS  PubMed  Google Scholar 

  • Kegeles LS, Abi-Dargham A, Zea-Ponce Y, Rodenhiser-Hill J, Mann JJ, Van Heertum RL et al (2000) Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry 48:627–640

    Article  CAS  PubMed  Google Scholar 

  • Kegeles LS, Abi-Dargham A, Frankle WG, Gil R, Cooper TB, Slifstein M et al (2010) Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch Gen Psychiatry 67(3):231–239

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Howes OD, Veronese M, Beck K, Seo S, Park JW et al (2017) Presynaptic dopamine capacity in patients with treatment-resistant schizophrenia taking clozapine: an [18 F] DOPA PET study. Neuropsychopharmacology 42(4):941–950

    Article  CAS  PubMed  Google Scholar 

  • Kinon BJ, Zhang L, Millen BA, Osuntokun OO, Williams JE, Kollack-Walker S et al (2011) A multicenter, inpatient, phase 2, double-blind, placebo-controlled dose-ranging study of LY2140023 monohydrate in patients with DSM-IV schizophrenia. J Clin Psychopharmacol 31(3):349–355

    Article  CAS  PubMed  Google Scholar 

  • Kinon BJ, Millen BA, Zhang L, McKinzie DL (2015) Exploratory analysis for a targeted patient population responsive to the metabotropic glutamate 2/3 receptor agonist pomaglumetad methionil in schizophrenia. Biol Psychiatry 78(11):754–762

    Article  CAS  PubMed  Google Scholar 

  • Kishi T, Iwata N (2015) Efficacy and tolerability of histamine-2 receptor antagonist adjunction of antipsychotic treatment in schizophrenia: a meta-analysis of randomized placebo-controlled trials. Pharmacopsychiatry 48:30–36

    CAS  PubMed  Google Scholar 

  • Kokkinou M, Ashok AH, Howes OD (2018) The effects of ketamine on dopaminergic function: meta-analysis and review of the implications for neuropsychiatric disorders. Mol Psychiatry 23:59–69

    Article  CAS  PubMed  Google Scholar 

  • Kraepelin E, Barclay RM, Robertson GM (1921) Dementia praecox and paraphrenia. Edinburgh, E S Livingston. https://journals.lww.com/jonmd/Citation/1921/10000/Dementia_Praecox_and_Paraphrenia.104.aspx. Accessed 01 August 2019

    Book  Google Scholar 

  • Kramer MS, Last B, Getson A, Reines SA (1997) The effects of a selective D4 dopamine receptor antagonist (L-745,870) in acutely psychotic inpatients with schizophrenia. Arch Gen Psychiatry 54(6):567–572

    Article  CAS  PubMed  Google Scholar 

  • Krause M, Zhu Y, Huhn M, Schneider-Thoma J, Bighelli I, Nikolakopoulou A et al (2018) Antipsychotic drugs for patients with schizophrenia and predominant or prominent negative symptoms: a systematic review and meta-analysis. Eur Arch Psychiatry Clin Neurosci 268(7):625–639

    Article  PubMed  Google Scholar 

  • Laruelle M (1998) Imaging dopamine transmission in schizophrenia: a review and meta-analysis. J Nucl Med Mol Imaging 42(3):211–221. https://europepmc.org/article/med/9796369. Accessed on 01 August 2019

    CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A (1999) Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J Psychopharmacol 13(4):358–371

    Article  CAS  PubMed  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D’Souza CD, Erdos J et al (1996) Single photon emission computerized tomography imaging of in amphetamine-induced dopamine release drug-free schizophrenic subjects. Proc Natl Acad Sci U S A 93(17):9235–9240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R (1999) Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 46:56–72

    Article  CAS  PubMed  Google Scholar 

  • Laszy J, Laszlovszky I, Gyertyán I (2005) Dopamine D3 receptor antagonists improve the learning performance in memory-impaired rats. Psychopharmacology 179:567–575

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Oh DY, Jung SC, Kim YM, Cho HK, Koh JK et al (1997) Neuroleptic drugs alter the dopamine transporter-mediated uptake and release of dopamine: a possible mechanism for drug-induced tardive dyskinesia. Pharmacol Res 35(5):447–450

    Article  CAS  PubMed  Google Scholar 

  • Lehman AF, Lieberman JA, Dixon LB, McGlashan TH, Miller AL, Perkins DO et al (2004) Practice guideline for the treatment of patients with schizophrenia, second edition. Am J Psychiatry 161:1–56. https://utsouthwestern.pure.elsevier.com/en/publications/practice-guideline-for-the-treatment-of-partients-with-schizophre. Accessed 28 September 2019

    PubMed  Google Scholar 

  • Leucht S, Busch R, Hamann J, Kissling W, Kane JM (2005) Early-onset hypothesis of antipsychotic drug action: a hypothesis tested, confirmed and extended. Biol Psychiatry 57:1543–1549

    Article  CAS  PubMed  Google Scholar 

  • Leucht S, Cipriani A, Spineli L, Mavridis D, Örey D, Richter F et al (2013) Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet 382(9896):951–962

    Article  CAS  PubMed  Google Scholar 

  • Leung CC, Gadelrab R, Ntephe CU, McGuire P, Demjaha A (2019) Neurobiology, clinical course, and therapeutic approaches of treatment resistant schizophrenia: toward an integrated view. Front Psych 10:1–28

    CAS  Google Scholar 

  • Levine SZ, Rabinowitz J, Faries D, Lawson AH, Ascher-Svanum H (2012) Treatment response trajectories and antipsychotic medications: examination of up to 18 months of treatment in the CATIE chronic schizophrenia trial. Schizophr Res 137:141–146

    Article  PubMed  Google Scholar 

  • Lewis SW, Barnes TR, Davies L, Murray RM, Dunn G, Hayhurst KP et al (2006) Randomized controlled trial of effect of prescription of clozapine versus other second-generation antipsychotic drugs in resistant schizophrenia. Schizophr Bull 32:715–723

    Article  PubMed  PubMed Central  Google Scholar 

  • Lieberman JA (1999) Pathophysiologic mechanisms in the pathogenesis and clinical course of schizophrenia. J Clin Psychiatry 60:9–12. https://www.psychiatrist.com/jcp/article/pages/1999/v60s12/v60s1203.aspx. Accessed 1 Aug 2019

    PubMed  Google Scholar 

  • Lieberman J, Jody D, Geisler S, Alvir J, Loebel A, Szymanski S et al (1993) Time course and biologic correlates of treatment response in first-episode schizophrenia. Arch Gen Psychiatry 50:369–376

    Article  CAS  PubMed  Google Scholar 

  • Lieberman JA, Safferman AZ, Pollack S, Szymanski S, Johns C, Howard A et al (1994) Clinical effects of clozapine in chronic schizophrenia: response to treatment and predictors of outcome. Am J Psychiatry 151:1744–1752

    Article  CAS  PubMed  Google Scholar 

  • Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO et al (2005) Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 353(12):1209–1223

    Article  CAS  PubMed  Google Scholar 

  • Lindenmayer JP (2000) Treatment refractory schizophrenia. Psychiatry Q 71(4):373–384

    Article  CAS  Google Scholar 

  • Mamo D, Remington G, Nobrega J, Hussey D, Chirakal R, Wilson AA et al (2004) Effect of acute antipsychotic administration on dopamine synthesis in rodents and human subjects using 6-[18F]-L-m-tyrosine. Synapse 52(2):153–162

    Article  CAS  PubMed  Google Scholar 

  • Mamo D, Graff A, Mizrahi R, Shammi CM, Romeyer F, Kapur S (2007) Differential effects of aripiprazole on D(2), 5-HT(2), and 5-HT(1A) receptor occupancy in patients with schizophrenia: a triple tracer PET study. Am J Psychiatry 164:1411–1417

    Article  PubMed  Google Scholar 

  • Martinot ML, Bragulat V, Artiges E, Dollé F, Hinnen F, Jouvent R et al (2001) Decreased presynaptic dopamine function in the left caudate of depressed patients with affective flattening and psychomotor retardation. Am J Psychiatry 158(2):314–316

    Article  CAS  PubMed  Google Scholar 

  • Masuda Y, Murai S, Itoh T (1982) Tolerance and reverse tolerance to haloperidol catalepsy induced by the difference of administration interval in mice. Jpn J Pharmacol 32:1186–1188

    Article  CAS  PubMed  Google Scholar 

  • McCormack PL (2015) Cariprazine: first global approval. Drugs 75(17):2035–2043

    Article  CAS  PubMed  Google Scholar 

  • McCutcheon R, Beck K, Jauhar S, Howes OD (2017) Defining the locus of dopaminergic dysfunction in schizophrenia: a meta-analysis and test of the mesolimbic hypothesis. Schizophr Bull 44(6):1301–1311

    Article  PubMed Central  Google Scholar 

  • McCutcheon RA, Abi-Dargham A, Howes OD (2019) Schizophrenia, dopamine and the striatum: from biology to symptoms. Trends Neurosci 42(3):205–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McEvoy JP, Lieberman JA, Stroup TS, Davis SM, Meltzer HY, Rosenheck RA et al (2006) Effectiveness of clozapine versus olanzapine, quetiapine, and risperidone in patients with chronic schizophrenia who did not respond to prior atypical antipsychotic treatment. Am J Psychiatry 163:600–610

    Article  PubMed  Google Scholar 

  • McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN et al (2015) Mechanisms of stress in the brain. Nat Neurosci 18:1353–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGowan S, Lawrence AD, Sales T, Quested D, Grasby P (2004) Presynaptic dopaminergic dysfunction in schizophrenia: a positron emission tomographic [18F]fluorodopa study. Arch Gen Psychiatry 61:134–142

    Article  PubMed  Google Scholar 

  • Meiergerd SM, Patterson TA, Schenk JO (1993) D2 receptors may modulate the function of the striatal transporter for dopamine: kinetic evidence from studies in vitro and in vivo. J Neurochem 61(2):764–767

    Article  CAS  PubMed  Google Scholar 

  • Meltzer HY (1980) Relevance of dopamine autoreceptors for psychiatry: preclinical and clinical studies. Schizophr Bull 6(3):456–475

    Article  CAS  PubMed  Google Scholar 

  • Meltzer HY (1989) Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology (Berlin) 99(Suppl. l):S18–S27

    Article  Google Scholar 

  • Meltzer HY, Elkis H, Vanover K, Weiner DM, van Kammen DP, Peters P et al (2012) Pimavanserin, a selective serotonin (5-HT)2A-inverse agonist, enhances the efficacy and safety of risperidone, 2mg/day, but does not enhance efficacy of haloperidol, 2mg/day: comparison with reference dose risperidone, 6mg/day. Schizophr Res 141:144–152

    Article  PubMed  Google Scholar 

  • Mercuri NB, Saiardi A, Bonci A, Picetti R, Calabresi P, Bernardi G et al (1997) Loss of autoreceptor function in dopaminergic neurons from dopamine D2 receptor deficient mice. Neuroscience 79(2):323–327

    CAS  PubMed  Google Scholar 

  • Merritt K, Egerton A, Kempton MJ, Taylor MJ, McGuire PK (2016) Nature of glutamate alterations in schizophrenia: a meta-analysis of proton magnetic resonance spectroscopy studies. JAMA Psychiat 73(7):665–674

    Article  Google Scholar 

  • Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M et al (2002) Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 5(3):267

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ, Di Cara B, Dekeyne A, Panayi F, De Groote L, Sicard D et al (2007) Selective blockade of dopamine D(3) versus D(2) receptors enhances frontocortical cholinergic transmission and social memory in rats: a parallel neurochemical and behavioural analysis. J Neurochem 100:1047–1061

    Article  CAS  PubMed  Google Scholar 

  • Miller JC, Friedhoff AJ (1979) Effects of haloperidol and apomorphine on the K+-depolarized overflow of [3H] dopamine from rat striatal slices. Biochem Pharmacol 28(5):688–690

    Article  CAS  PubMed  Google Scholar 

  • Mizrahi R, Addington J, Rusjan PM, Suridjan I, Ng A, Boileau I et al (2012) Increased stress-induced dopamine release in psychosis. Biol Psychiatry 71(6):561–567

    Article  CAS  PubMed  Google Scholar 

  • Moncrieff J (2009) A critique of the dopamine hypothesis of schizophrenia and psychosis. Harv Rev Psychiatry 17:214–225

    Article  PubMed  Google Scholar 

  • Mouchlianitis E, McCutcheon R, Howes OD (2016a) Brain-imaging studies of treatment-resistant schizophrenia: a systematic review. Lancet Psychiatry 3(5):451–463

    Article  PubMed  PubMed Central  Google Scholar 

  • Mouchlianitis E, Bloomfield MA, Law V, Beck K, Selvaraj S, Rasquinha N et al (2016b) Treatment-resistant schizophrenia patients show elevated anterior cingulate cortex glutamate compared to treatment-responsive. Schizophr Bull 42(3):744–752

    Article  PubMed  Google Scholar 

  • Murray AM, Hyde TM, Knable MB, Herman MM, Bigelow LB, Carter JM et al (1995) Distribution of putative D4 dopamine receptors in postmortem striatum from patients with schizophrenia. J Neurosci 15(3):2186–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray RM, Lappin J, Di Forti M (2008) Schizophrenia: from developmental deviance to dopamine dysregulation. Eur Neuropsychopharmacol 18(Suppl. 3):S129–S134

    Article  CAS  PubMed  Google Scholar 

  • Nakajima S, Takeuchi H, Plitman E, Fervaha G, Gerretsen P, Caravaggio F et al (2015) Neuroimaging findings in treatment-resistant schizophrenia: a systematic review: lack of neuroimaging correlates of treatment-resistant schizophrenia. Schizophr Res 164(1–3):164–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Nasrallah H, Tandon R, Keshavan M (2011) Beyond the facts in schizophrenia: closing the gaps in diagnosis, pathophysiology, and treatment. Epidemiol Psychiatr Sci 20(4):317–327

    Article  CAS  PubMed  Google Scholar 

  • Nasrallah HA, Fedora R, Morton R (2019) Successful treatment of clozapine-nonresponsive refractory hallucinations and delusions with pimavanserin, a serotonin 5HT-2A receptor inverse agonist. Schizophr Res 208:217–220

    Article  PubMed  Google Scholar 

  • Natesan S, Reckless GE, Nobrega JN, Fletcher PJ, Kapur S (2006) Dissociation between in vivo occupancy and functional antagonism of dopamine D 2 receptors: comparing aripiprazole to other antipsychotics in animal models. Neuropsychopharmacology 31(9):1854–1863

    Article  CAS  PubMed  Google Scholar 

  • National Collaborating Centre for Mental Health UK (2014) Psychosis and schizophrenia in adults. National Collaborating Centre for Mental Health, London

    Google Scholar 

  • Nemeth G, Laszlovszky I, Czobor P, Szalai E, Szatmári B, Harsányi J et al (2017a) Cariprazine versus risperidone monotherapy for treatment of predominant negative symptoms in patients with schizophrenia: a randomised, double-blind, controlled trial. Lancet 389(10,074):1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Nemeth B, Molnár A, Akehurst R, Horváth M, Kóczián K, Németh G et al (2017b) Quality-adjusted life year difference in patients with predominant negative symptoms of schizophrenia treated with cariprazine and risperidone. J Comp Eff Res 6(8):639–648

    Article  PubMed  Google Scholar 

  • Newman-Tancredi A, Cussac D, Audinot V, Nicolas JP, Ceuninck FD, Boutin JA et al (2002) Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. II. Agonist and antagonist properties at subtypes of dopamine D2-like receptor and α1/α2-adrenoceptor. J Pharmacol Exp Ther 303:805–814

    Article  CAS  PubMed  Google Scholar 

  • Nordstrom AL, Farde L, Halldin C (1992) Time course of D2-dopamine receptor occupancy examined by PET after single oral doses of haloperidol. Psychopharmacology 106(4):433–438

    Article  CAS  PubMed  Google Scholar 

  • Nordstrom AL, Farde L, Wiesel FA, Forslund K, Pauli S, Halldin C et al (1993) Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects—a double-blind PET study of schizophrenic patients. Biol Psychiatry 33:227–235

    Article  CAS  PubMed  Google Scholar 

  • Nordstrom AL, Farde L, Nyberg S, Karlsson P, Halldin C, Sedvall G (1995) D1, D2, and 5-HT2 receptor occupancy in relation to clozapine serum concentration: a PET study of schizophrenic patients. Am J Psychiatry 152:1444–1449

    Article  CAS  PubMed  Google Scholar 

  • Nucifora FC Jr, Woznica E, Lee BJ, Cascella N, Sawa A (2018) Treatment resistant schizophrenia: clinical, biological, and therapeutic perspectives. Neurobiol Dis 131:1–13

    Google Scholar 

  • Nyberg S, Farde L, Eriksson L, Halldin C, Eriksson B (1993) 5-HT 2 and D 2 dopamine receptor occupancy in the living human brain. Psychopharmacology 110:265–272

    Article  CAS  PubMed  Google Scholar 

  • Okhuijsen-Pfeifer C, Huijsman EA, Hasan A, Sommer IE, Leucht S, Kahn RS et al (2018) Clozapine as a first-or second-line treatment in schizophrenia: a systematic review and meta-analysis. Acta Psychiatr Scand 138(4):281–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O et al (1997) Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385(6617):634

    Article  CAS  PubMed  Google Scholar 

  • Ottong SE, Garver DL (1997) A biomodal distribution of plasma HVA/MHPG in the psychoses. Psychiatry Res 69:97–103

    Article  CAS  PubMed  Google Scholar 

  • Owen F, Cross AJ, Waddington JL, Poulter M, Gamble SJ, Crow TJ (1979) Dopamine-mediated behaviour and 3H-spiperone binding to striatal membranes in rats after nine months haloperidol administration. Life Sci 26(1):55–59

    Article  Google Scholar 

  • Patel MX, Bishara D, Jayakumar S, Zalewska K, Shiers D, Crawford MJ et al (2014) Quality of prescribing for schizophrenia: evidence from a national audit in England and Wales. Eur Neuropsychopharmacol 24(4):499–509

    Article  CAS  PubMed  Google Scholar 

  • Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV et al (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized phase 2 clinical trial. Nat Med 13(9):1102

    Article  CAS  PubMed  Google Scholar 

  • de Paulis T (2001) M-100907 (aventis). Curr Opin Investig Drugs 2:123–132

    PubMed  Google Scholar 

  • Pilowsky LS, Costa DC, Ell PJ, Murray RM, Verhoeff NPLG, Kerwin RW (1993) Antipsychotic medication, D2 dopamine receptor blockade and clinical response: a 123I IBZM SPET (single photon emission tomography) study. Psychol Med 23(3):791–797

    Article  CAS  PubMed  Google Scholar 

  • Pruessner JC, Champagne F, Meaney MJ, Dagher A (2004) Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: a positron emission tomography study using [11C]raclopride. J Neurosci 24:2825–2831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redden L, Rendenbach-Mueller B, Abi-Saab WM, Katz DA, Goenjian A, Robieson WZ et al (2011) A double-blind, randomized, placebo-controlled study of the dopamine D3 receptor antagonist ABT-925 in patients with acute schizophrenia. J Clin Psychopharmacol 31(2):221–225

    Article  CAS  PubMed  Google Scholar 

  • Reith J, Benkelfat C, Sherwin A, Yasuhara Y, Kuwabara H, Andermann F et al (1994) Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proc Natl Acad Sci U S A 91(24):11,651–11,654

    Article  CAS  Google Scholar 

  • Remington G, Kapur S, Foussias G, Agid O, Mann S, Borlido C et al (2012) Tetrabenazine augmentation in treatment-resistant schizophrenia: a 12-week, double-blind, placebo-controlled trial. J Clin Psychopharmacol 32:95–99

    Article  CAS  PubMed  Google Scholar 

  • Reynolds GP, Mason SL (1994) Are striatal dopamine D4 receptors increased in schizophrenia? J Neurochem 63(4):1576–1577

    Article  CAS  PubMed  Google Scholar 

  • Rocha BA, Fumagalli F, Gainetdinov RR, Jones SR, Ator R, Giros B et al (1998) Cocaine self-administration in dopamine-transporter knockout mice. Nat Neurosci 1(2):132–137

    Article  CAS  PubMed  Google Scholar 

  • Rosell DR, Zaluda LC, McClure MM, Perez-Rodriguez MM, Strike KS, Barch DM et al (2015) Effects of the D 1 dopamine receptor agonist dihydrexidine (DAR-0100A) on working memory in schizotypal personality disorder. Neuropsychopharmacology 40(2):446–453

    Article  CAS  PubMed  Google Scholar 

  • Roth RH (1984) CNS dopamine autoreceptors: distribution, pharmacology, and function. Ann N Y Acad Sci 430:27–53

    Article  CAS  PubMed  Google Scholar 

  • Rothblat DS, Schneider JS (1997) Regionally specific effects of haloperidol and clozapine on dopamine reuptake in the striatum. Neurosci Lett 228(2):119–122

    Article  CAS  PubMed  Google Scholar 

  • Salvatore MF, Calipari ES, Jones SR (2016) Regulation of tyrosine hydroxylase expression and phosphorylation in dopamine transporter-deficient mice. ACS Chem Neurosci 7(7):941–951

    Article  CAS  PubMed  Google Scholar 

  • Samaha AN, Seeman P, Stewart J, Rajabi H, Kapur S (2007) “Breakthrough” dopamine supersensitivity during ongoing antipsychotic treatment leads to treatment failure over time. J Neurosci 27(11):2979–2986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samara MT, Dold M, Gianatsi M, Nikolakopoulou A, Helfer B, Salanti G et al (2016) Efficacy, acceptability, and tolerability of antipsychotics in treatment-resistant schizophrenia: a network meta-analysis. JAMA Psychiat 73(3):199–210

    Article  Google Scholar 

  • Santiago M, Westerink BH (1991) The regulation of dopamine release from nigrostriatal neurons in conscious rats: the role of somatodendritic autoreceptors. Eur J Pharmaco 204(1):79–85

    Article  CAS  Google Scholar 

  • Sautel F, Griffon N, Sokoloff P, Schwartz JC, Launay C, Simon P et al (1995) Nafadotride, a potent preferential dopamine D3 receptor antagonist, activates locomotion in rodents. J Pharmacol Exp Ther 275:1239–1246. http://jpet.aspetjournals.org/content/275/3/1239.short. Accessed 15 September 2019

    CAS  PubMed  Google Scholar 

  • Schwieler L, Linderholm KR, Nilsson-Todd LK, Erhardt S, Engberg G (2008) Clozapine interacts with the glycine site of the NMDA receptor: electrophysiological studies of dopamine neurons in the rat ventral tegmental area. Life Sci 83(5–6):170–175

    Article  CAS  PubMed  Google Scholar 

  • Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74:1–58

    Article  CAS  PubMed  Google Scholar 

  • See RE, Ellison G (1990) Intermittent and continuous haloperidol regimens produce different types of oral dyskinesias in rats. Psychopharmacology 100:404–412

    Article  CAS  PubMed  Google Scholar 

  • Seeman P (2011) All roads to schizophrenia lead to dopamine supersensitivity and elevated dopamine D2High receptors. CNS Neurosci Ther 17:118–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seeman P (2012) Dopamine agonist radioligand binds to both D2High and D2Low receptors, explaining why alterations in D2High are not detected in human brain scans. Synapse 66:88–93

    Article  CAS  PubMed  Google Scholar 

  • Seeman P, Lee T (1974) The dopamine-releasing actions of neuroleptics and ethanol. J Pharmacol Exp Ther 190(1):131–140. http://jpet.aspetjournals.org/content/190/1/131.long. Accessed 15 September 2019

    CAS  PubMed  Google Scholar 

  • Seeman P, Lee T (1975) Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188:1217–1219

    Article  CAS  PubMed  Google Scholar 

  • Seeman P, Tallerico T (1998) Antipsychotic drugs which elicit little or no parkinsonism bind more loosely than dopamine to brain D2 receptors, yet occupy high levels of these receptors. Mol Psychiatry 3:123–134

    Article  CAS  PubMed  Google Scholar 

  • Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261:717–719

    Article  CAS  PubMed  Google Scholar 

  • Seeman P, Guan H, Van Tol H (1993) Dopamine D4 receptors elevated in schizophrenia. Nature 365:441–445

    Article  CAS  PubMed  Google Scholar 

  • Seeman P, Ko F, Willeit M, McCormick P, Ginovart N (2005) Antiparkinson concentrations of pramipexole and PHNO occupy dopamine D2(high) and D3(high) receptors. Synapse 58:122–128

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj S, Arnone D, Cappai A, Howes O (2014) Alterations in the serotonin system in schizophrenia: a systematic review and meta-analysis of postmortem and molecular imaging studies. Neurosci Biobehav Rev 45:233–245

    Article  CAS  PubMed  Google Scholar 

  • Shah P, Iwata Y, Plitman E, Brown EE, Caravaggio F, Kim J et al (2018) The impact of delay in clozapine initiation on treatment outcomes in patients with treatment-resistant schizophrenia: a systematic review. Psychiatry Res 268:114–122

    Article  CAS  PubMed  Google Scholar 

  • Shank RP, Aprison MH (1981) Present status and significance of the glutamine cycle in neural tissues. Life Sci 28:837–842

    Article  CAS  PubMed  Google Scholar 

  • Shotbolt P, Stokes PR, Owens SF, Toulopoulou T, Picchioni MM, Bose SK et al (2011) Striatal dopamine synthesis capacity in twins discordant for schizophrenia. Psychol Med 41(11):2331–2338

    Article  CAS  PubMed  Google Scholar 

  • Siebert GA, Pond SM, Bryan-Lluka LJ (2000) Further characterisation of the interaction of haloperidol metabolites with neurotransmitter transporters in rat neuronal cultures and in transfected COS-7 cells. Naunyn Schmiedeberg’s Arch Pharmacol 361(3):255–264

    Article  CAS  Google Scholar 

  • Sigala S, Missale C, Spano P (1997) Opposite effects of dopamine D2 and D3 receptors on learning and memory in the rat. Eur J Pharmacol 336:107–112

    Article  CAS  PubMed  Google Scholar 

  • Siskind D, McCartney L, Goldschlager R, Kisely S (2016) Clozapine v. first-and second-generation antipsychotics in treatment-refractory schizophrenia: systematic review and meta-analysis. Br J Psychiatry 209:385–392

    Article  PubMed  Google Scholar 

  • Slifstein M, Van De Giessen E, Van Snellenberg J, Thompson JL, Narendran R, Gil R et al (2015) Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia a positron emission tomographic functional magnetic resonance imaging study. JAMA Psychiat 72(4):316–324

    Article  Google Scholar 

  • Sokoloff P, Andrieux M, Besancon R, Pilon C, Martres MP, Giros B et al (1992) Pharmacology of human dopamine D3 receptor expressed in a mammalian cell line: comparison with D2 receptor. Eur J Pharmacol 225:331–337

    Article  CAS  PubMed  Google Scholar 

  • Sonnenschein S, Grace A (2017) M10. Pomaglumetad methionil normalizes increased DA neuron activity in the VTA in the methylazoxymethanol acetate developmental disruption model of schizophrenia. Schizophr Bull 43(Suppl 1):S214

    Article  PubMed Central  Google Scholar 

  • Sonnenschein SF, Grace AA (2020) Insights on current and novel antipsychotic mechanisms from the MAM model of schizophrenia. Neuropharmacology 163:1–14

    Article  CAS  Google Scholar 

  • Stauffer VL, Millen BA, Andersen S, Kinon BJ, LaGrandeur L, Lindenmayer JP et al (2013) Pomaglumetad methionil: no significant difference as an adjunctive treatment for patients with prominent negative symptoms of schizophrenia compared to placebo. Schizophr Res 150(2–3):434–441

    Article  PubMed  Google Scholar 

  • Stephens P (1990) A review of clozapine: an antipsychotic for treatment-resistant schizophrenia. Compr Psychiatry 31(4):315–326

    Article  CAS  PubMed  Google Scholar 

  • Stone JM, Davis JM, Leucht S, Pilowsky LS (2009) Cortical dopamine D(2)/D(3) receptors are a common site of action for antipsychotic drugs—an original patient data meta-analysis of the SPECT and PET in vivo receptor imaging literature. Schizophr Bull 35(4):789–797

    Article  PubMed  Google Scholar 

  • Suaud-Chagny MF, Ponec J, Gonon F (1991) Presynaptic autoinhibition of the electrically evoked dopamine release studied in the rat olfactory tubercle by in vivo electrochemistry. Neuroscience 45(3):641–652

    Article  CAS  PubMed  Google Scholar 

  • Suaud-Chagny MF, Dugast C, Chergui K, Msghina M, Gonon F (1995) Uptake of dopamine released by impulse flow in the rat mesolimbic and striatal systems in vivo. J Neurochem 65(6):2603–2611

    Article  CAS  PubMed  Google Scholar 

  • Sulzer D, Sonders MS, Poulsen NW, Galli A (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75:406–433

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Remington G, Mulsant BH, Rajji TK, Uchida H, Graff-Guerrero A et al (2011) Treatment resistant schizophrenia and response to antipsychotics: a review. Schizophr Res 133:54–62

    Article  PubMed  Google Scholar 

  • Takahashi H (2013) PET neuroimaging of extrastriatal dopamine receptors and prefrontal cortex functions. J Physiol Paris 107:503–509

    Article  PubMed  Google Scholar 

  • Takahashi H, Kato M, Takano H, Arakawa R, Okumura M, Otsuka T et al (2008) Differential contributions of prefrontal and hippocampal dopamine D1 and D2 receptors in human cognitive functions. J Neurosci 28:12,032–12,038

    Article  CAS  Google Scholar 

  • Takano H (2018) Cognitive function and monoamine neurotransmission in schizophrenia: evidence from positron emission tomography studies. Front Psych 9:1–8

    Google Scholar 

  • Tamminga CA (2002) Partial dopamine agonists in the treatment of psychosis. J Neural Transm (Vienna) 109:411–420

    Article  CAS  Google Scholar 

  • Tamminga CA (2006) The neurobiology of cognition in schizophrenia. J Clin Psychiatry 67:e11. https://europepmc.org/article/med/17081078. Accessed 30 July 2019

    Article  PubMed  Google Scholar 

  • Tamminga CA, Schaffer MH, Smith RC, Davis JM (1978) Schizophrenic symptoms improve with apomorphine. Science 200(4341):567–568

    Article  CAS  PubMed  Google Scholar 

  • Tauscher J, Hussain T, Agid O, Verhoeff NP, Wilson AA, Houle S et al (2004) Equivalent occupancy of dopamine D1 and D2 receptors with clozapine: differentiation from other atypical antipsychotics. Am J Psychiatry 161:1620–1625

    Article  PubMed  Google Scholar 

  • Taylor DM, Duncan-McConnell D (2000) Refractory schizophrenia and atypical antipsychotics. J Psychopharmacol 14:409–418

    Article  CAS  PubMed  Google Scholar 

  • Toda M, Abi-Dargham A (2007) Dopamine hypothesis of schizophrenia: making sense of it all. Curr Psychiatry Rep 9(4):329–336

    Article  PubMed  Google Scholar 

  • Torstenson R, Hartvig P, Långström B, Bastami S, Antoni G, Tedroff J (1998) Effect of apomorphine infusion on dopamine synthesis rate relates to dopaminergic tone. Neuropharmacology 37:989–995

    Article  CAS  PubMed  Google Scholar 

  • Turjanski N, Sawle GV, Playford ED, Weeks R, Lammerstma AA, Lees AJ et al (1994) PET studies of the presynaptic and postsynaptic dopaminergic system in Tourette’s syndrome. J Neurol Neurosurg Psychiatry 57(6):688–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turrone P, Kapur S, Seeman MV, Brown GM, Rahman MZ, Flint A (2000) Olanzapine and clozapine elevate prolactin after every daily dose (abstract). Biol Psychiatry 47(8 suppl):155

    Article  Google Scholar 

  • Uchida H, Takeuchi H, Graff-Guerrero A, Suzuki T, Watanabe K, Mamo DC (2011) Dopamine D2 receptor occupancy and clinical effects: a systematic review and pooled analysis. J Clin Psychopharmacol 31:497–502

    Article  CAS  PubMed  Google Scholar 

  • Üçok A, Çikrikçili U, Karabulut S, Salaj A, Öztürk M, Tabak Ö, Durak R (2015) Delayed initiation of clozapine may be related to poor response in treatment-resistant schizophrenia. Int Clin Psychopharmacol 30(5):290–295

    Article  PubMed  Google Scholar 

  • Van Rossum JM (1966) The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther 160(2):492

    PubMed  Google Scholar 

  • Van Rossum JM, Janssen PA, Boissier JR, Julou L, Loew DM (1970) I Moller-Nielsen Pharmacology. Mod Probl Pharmacopsychiatry 5:23–70

    PubMed  Google Scholar 

  • Van Tol HH, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB et al (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350:610–614

    Article  PubMed  Google Scholar 

  • Verdoux H, Quiles C, Bachmann CJ, Siskind D (2018) Prescriber and institutional barriers and facilitators of clozapine use: a systematic review. Schizophr Res 201:10–19

    Article  PubMed  Google Scholar 

  • Vernaleken I, Kumakura Y, Cumming P, Buchholz HG, Siessmeier T, Stoeter P et al (2006) Modulation of [18F]fluorodopa (FDOPA) kinetics in the brain of healthy volunteers after acute haloperidol challenge. NeuroImage 30(4):1332–1339

    Article  PubMed  Google Scholar 

  • Vita A, Minelli A, Barlati S, Deste G, Giacopuzzi E, Valsecchi P et al (2019) Treatment-resistant schizophrenia: genetic and neuroimaging correlates. Front Pharmacol 10:402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollenweider FX, Vontobel P, Øye I, Hell D, Leenders KL (2000) Effects of (S)-ketamine on striatal dopamine: a [11C]raclopride PET study of a model psychosis in humans. J Psychiatr Res 34:35–43

    Article  CAS  PubMed  Google Scholar 

  • Wagner E, Löhrs L, Siskind D, Honer WG, Falkai P, Hasan A (2019) Clozapine augmentation strategies – a systematic meta-review of available evidence. Treatment options for clozapine resistance. J Psychopharmacol 33(4):423–435

    Article  CAS  PubMed  Google Scholar 

  • Waters N, Svensson K, Haadsma-Svensson SR, Smith MW, Carlsson A (1993) The dopamine D3-receptor: a postsynaptic receptor inhibitory on rat locomotor activity. J Neural Transm Gen Sect 94:11–19

    Article  CAS  PubMed  Google Scholar 

  • Weinberger DR, Laruelle M (2001) Neurochemical and neuropharmacological imaging in schizophrenia. In: Davies KL, Charney DS, Coyle JT, Nemeroff C (eds) Neuropsychopharmacology: the fifth generation of progress. Lippincott Williams, Philadelphia, pp 883–885

    Google Scholar 

  • Wilson AA, McCormick P, Kapur S, Willeit M, Garcia A, Hussey D et al (2005) Radiosynthesis and evaluation of [11C]-(+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography. J Med Chem 48:4153–4160

    Article  CAS  PubMed  Google Scholar 

  • Wolkin A, Barouche F, Wolf AP, Rotrosen J, Fowler JS, Shiue CY et al (1989) Dopamine blockade and clinical response: evidence for two biological subgroups of schizophrenia. Am J Psychiatry 146(7):905–908

    Article  CAS  PubMed  Google Scholar 

  • Yaffe D, Forrest LR, Schuldiner S (2018) The ins and outs of vesicular monoamine transporters. J Gen Physiol 150:671–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yatham LN, Liddle PF, Shiah IS, Lam RW, Ngan E, Scarrow G et al (2002) PET study of [18F] 6-fluoro-L-dopa uptake in neuroleptic-and mood-stabilizer-naive first-episode nonpsychotic mania: effects of treatment with divalproex sodium. Am J Psychiatry 159(5):768–774

    Article  PubMed  Google Scholar 

  • Yokoi F, Gründer G, Biziere K, Stephane M, Dogan AS, Dannals RF et al (2002) Dopamine D 2 and D 3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography and [11 C] raclopride. Neuropsychopharmacology 27(2):248–259

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura B, Yada Y, So R, Takaki M, Yamada N (2017) The critical treatment window of clozapine in treatment-resistant schizophrenia: secondary analysis of an observational study. Psychiatry Res 250:65–70

    Article  CAS  PubMed  Google Scholar 

  • Yung AR, Phillips LJ, Yuen HP, Francey SM, McFarlane CA, Hallgren M, McGorry PD (2003) Psychosis prediction: 12-month follow up of a high-risk (“prodromal”) group. Schizophr Res 60(1):21–32

    Article  PubMed  Google Scholar 

  • Zakzanis KK, Hansen KT (1998) Dopamine D2 densities and the schizophrenic brain. Schizophr Res 32(3):201–206

    Article  CAS  PubMed  Google Scholar 

  • Zetterström T, Ungerstedt U (1984) Effects of apomorphine on the in vivo release of dopamine and its metabolites, studied by brain dialysis. Eur J Pharmacol 97(1–2):29–36

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chukwuma U. Ntephe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ntephe, C.U., Demjaha, A. (2021). Dopamine and Response to Antipsychotic Medication. In: Dierckx, R.A., Otte, A., de Vries, E.F.J., van Waarde, A., Sommer, I.E. (eds) PET and SPECT in Psychiatry. Springer, Cham. https://doi.org/10.1007/978-3-030-57231-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57231-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57230-3

  • Online ISBN: 978-3-030-57231-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics