Skip to main content

Fundamentals of Satellite Radiothermovision

  • Chapter
  • First Online:
Satellite Radiothermovision of Atmospheric Processes

Part of the book series: Springer Praxis Books ((PRAXIS))

  • 234 Accesses

Abstract

This chapter contains a description of the satellite radiothermovision approach. The combination of its constituent algorithms creates a computational scheme that is closed relative to the input information of satellite radiometry data, which provides: restoration of scalar fields of geophysical parameters of the ocean-atmosphere system of global coverage on a regular coordinate grid with a step of the order of 0.125−0.25° without data gaps and with frequent sampling (up to about 1 h) in time; restoration of the dynamics of these fields in the form of synchronous vector fields of advection (velocities of horizontal displacements); calculation of the integral characteristics of the dynamics and energy balance of the studied objects in terms of the total power of the latent heat fluxes through a given boundary or inside/outside a closed contour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akvilonova AB, Kutuza BG (1978) Radioteplovoe izluchenie oblakov (Microwave radiothermal emission of clouds) Radiotekhnika i elektronika 23(9):1792–1806 (in Russian)

    Google Scholar 

  • Alexanin AI, Alexanina MG, Karnatsky AY (2011) Avtomaticheskiy raschet skorostey peremescheniy ledovyh poley (Automatic calculation of movement velocities of sea ice fields). Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa 8(2):9–17 (in Russian)

    Google Scholar 

  • Alexanin AI, Alexanina MG, Karnatsky AY (2013) Avtomaticheskiy raschet skorostey poverhnostnyh techeniy okeana po posledovatelnosti sputnikovyh izobrazheniy (Automatic computation of sea surface velocities on a sequence of satellite images). Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa 10(2):131–142 (in Russian)

    Google Scholar 

  • Anandan P (1989) A computational framework and an algorithm for the measurement of visual motion. Int J Comput Vis 2(3):283–310

    Google Scholar 

  • Armand NA, Polyakov VM (2005) Radio propagation and remote sensing of the environment. CRC Press, Boca Raton, 448p

    Google Scholar 

  • AviSynth (2002) A powerful nonlinear scripting language for video. AviSynth. http://avisynth.org/

  • Barron JL, Fleet DJ, Beauchemin SS (1994) Performance of optical flow techniques. Int J Comput Vis 12(1):43–77

    Google Scholar 

  • Basharinov AE, Gurvich AS, Egorov ST (1974) Radioizlucheniye Zemli kak planet (Radioemission of the Earth as a planet). Nauka, Moscow, 187p (in Russian)

    Google Scholar 

  • Bindschadler RA, Scambos TA (1991) Satellite-image-derived velocity field of an Antarctic ice stream. Science 252(5003):242–246

    Google Scholar 

  • Bobkov VA, Kazansky AV, Morozov MA, Shchebenkova AA (2003) Relaksatsionno-konturnyy algoritm opredeleniya vektorov morskih techeniy po sputnikovym izobrazheniyam i ego sinopticheskaya verifikatsiya (The relaxation-contour algorithm for determining the vectors of sea currents from satellite images and its synoptic verification). Avtometriya (1):73–81 (in Russian)

    Google Scholar 

  • Bowen MM, Emery WJ, Wilkin JL, Tildesley PC, Barton IJ, Knewtson R (2002) Extracting multiyear surface currents from sequential thermal imagery using the maximum cross-correlation technique. J Atmos Ocean Technol 19(10):1665–1676

    Google Scholar 

  • Breaker LC, Krasnopolsky VM, Rao DB, Yan X-H (1994) The feasibility of estimating ocean surface currents on an operational basis using satellite feature tracking method. Bull Am Meteorol Soc 75(11):2085–2095

    Google Scholar 

  • Dworak R, Key JR (2009) Twenty years of polar winds from AVHRR: validation and comparison with ERA-40. J Appl Meteorol Climatol 48(1):24–40

    Google Scholar 

  • Eigenwillig N, Fischer H (1982) Determination of midtropospheric wind vectors by tracking pure water vapor structure in METEOSAT water vapor image sequences. Bull Am Meteorol Soc 63(1):44–57

    Google Scholar 

  • Emery WJ, Thomas AC, Collins MJ, Crawford WR, Mackas DL (1986) An objective method for computing advective surface velocities from sequential infrared satellite images. J Geophys Res 91(C11):12865–12878

    Google Scholar 

  • Ermakov DM (2017) “Interlon”: Programmnoye obespecheniye dlya prostranstvennoy interpolyatsii sutochnyh poley productov sputnikovogo radioteplovogo monitoringa Zemli (Software for combining data processing products of the daily satellite radiothermal monitoring of the Earth). Svidetel’stvo gosudarstvennoy registratsii programmy dlya EVM # 2017663104. (Certificate of state registration of computer programs No. 2017663104.) Registration date 11/24/2017 (in Russian)

    Google Scholar 

  • Ermakov DM (2018) Global circulation of latent heat in the Earth’s atmosphere according to data from satellite radiothermovision. Izv Atmos Ocean Phys 54(9):1223–1243

    Google Scholar 

  • Ermakov D, Chernushich A, Sharkov E, Shramkov Y (2011) Stream handler system: an experience of application to investigation of global tropical cyclogenesis (electronic resource). In: Proceedings of 34th international symposium on remote sensing of environment, Sydney, 10–15 April, 2011. URL: http://www.isprs.org/proceedings/2011/ISRSE-34/211104015Final00456.pdf

  • Ermakov DM, Sharkov EA, Chernushich AP (2015a) Assessment of the accuracy of the interpolation scheme of satellite radiothermovision. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa (Curr Probl Remote Sens Earth Space) 12.(2):77–88 (in Russian)

    Google Scholar 

  • Ermakov DM, Sharkov EA, Chernushich AP (2015b) Satellite radiothermovision of atmospheric mesoscale processes: case study of tropical cyclones. Int Arch Photogramm Remote Sens Spat Inf Sci ISPRS Arch XL(7/W3):79–186

    Google Scholar 

  • Ermakov DM, Sharkov EA, Chernushich AP (2016) A multisensory algorithm of satellite radiothermovision. Izv Atmos Ocean Phys 52(9):1172–1180

    Google Scholar 

  • Ermakov DM, Sharkov EA, Chernushich AP (2017) Satellite radiothermovision on synoptic and climatically significant scales. Izv Atmos Ocean Phys 53(9):973–978

    Google Scholar 

  • Ermakov DM, Raev MD, Chernushich AP, Sharkov EA (2019a) Algorithm for construction of global ocean-atmosphere radiothermal fields with high spatiotemporal sampling based on satellite microwave measurements. Izv Atmos Ocean Phys 55(9):1041–1052. https://doi.org/10.1134/s0001433819090159

  • Ermakov DM, Sharkov EA, Chernushich AP (2019b) Evaluation of tropospheric latent heat advective fluxes over the ocean by the animated analysis of satellite radiothermal remote data. Izv Atmos Ocean Phys 55(9):1125–1132. https://doi.org/10.1134/s0001433819090160

  • Ermakov DM, Smirnov MT (2001) Problems of superposition of satellite optical and microwave sensors data for their complex analysis. Issledovanie Zemli iz Kosmosa (Earth Res Space) (2):45–55 (in Russian)

    Google Scholar 

  • FileX (2000) Intelligent vision systems. FileX. https://www.thefilex.com/software

  • Fleet DJ, Weiss Y (2005) Optical flow estimation. In: Paragios N, Chen Y, Faugeras O (eds) Chapter 15: Mathematical models in computer vision: The handbook. Springer. Berlin, pp 239–258

    Google Scholar 

  • Gaikovich KP (2003) High-sensitivity radiometry of air-water interface fast temperature and heat flux variances. IEEE Trans Geosci Remote Sens 41(12):2760–2766

    Google Scholar 

  • Gaikovich K, Troitsky RV (1998) Dynamics of temperature profile, heat, and mass exchange through air-water interface by measurements of thermal radio emission evolution at 60 GHz. IEEE Trans Geosci Remote Sens 36(1):341–344

    Google Scholar 

  • Garbe CS, Ommer B (2013) Parameter estimation in image processing and computer vision. In: Bock HG et al (eds) Model based parameter estimation: Theory and applications. Springer, Berlin, pp 311–334

    Google Scholar 

  • Gledzer EB, Golitsyn GS (2010) Skeyling i konechnye ansambli chastits v dvizhenii s pritokom energii (Scaling and finite ensembles of particles in motion with an influx of energy). Doklady Akademii Nauk 443(4):446–470 (in Russian)

    Google Scholar 

  • Gorbunov ME, Kutuza BG (2018) Cosmos-243 as the starting point for the development of microwave radiometry methods of the Earth’s atmosphere and surface. Izv Atmos Ocean Phys 54(3):275–281

    Google Scholar 

  • Grankov AG, Milshin AA (2016) Microwave radiation of the ocean-atmosphere: boundary heat and dynamic interaction. 2nd edn. Springer, Berlin, 193p

    Google Scholar 

  • Grishin SV, Vatolin DS, Lukin AS, Putilin SY, Strelnikov KN (2008) Obzor blochnyh metodov otsenki dvizheniya v tsifrovyh video signalah (An overview of block methods for estimating motion in digital video signals). In: Programmnye sredstva i instrumenty: tematicheskiy sbornik N 9 (Software systems and tools: thematic collection No 9). MGU, Moscow, pp 50–62 (in Russian)

    Google Scholar 

  • Grzywacz NM, Yuille AL (1990) A model for the estimation of local image velocity by cells in the visual cortex. Proc R Soc Lond B239(1295):129–161

    Google Scholar 

  • Gurvich AS, Kutuza BG (2010) “Kosmos-243” – pervyi v mire eksperiment po issledovaniyu Zemli iz kosmosa radiofizicheskimi metodami (“Kosmos-243”― the first experiment in the World on the Earth research from space using radiophysical methods). Issledovanie Zemli iz kosmosa (2):14–25 (in Russian)

    Google Scholar 

  • Hartman DL (1999) Radiation, clouds, water vapor, precipitation, and atmospheric circulation. In: King MD (ed) EOS science plan: the state of science in the EOS program. NASA, pp 39–114

    Google Scholar 

  • Haug T, Kääb A, Skvarca P (2010) Monitoring ice shelf velocities from repeat MODIS and landsat data—a method study on the larsen C ice shelf, antarctic peninsula, and 10 other ice shelves around Antarctica. Cryosphere 4(2):161–178

    Google Scholar 

  • Horn BKP, Schunck BG (1981) Determining optical flow. Artif Intell 17(17):185–203

    Google Scholar 

  • Kääb A (2002) Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: examples using digital aerial imagery and ASTER data. ISPRS J Photogramm Remote Sens 57(1–2):39–52

    Google Scholar 

  • Kääb A, Vollmer M (2000) Surface geometry, thickness changes and flow fields on creeping mountain permafrost: automatic extraction by digital image analysis. Permafr Periglac Process 11(4):315–326

    Google Scholar 

  • Kadygrov EN, Shur GN, Viazankin AS (2003) Investigation of atmospheric boundary layer temperature, turbulence, and wind parameters on the basis of passive microwave remote sensing. Radio Sci 38(3):8048, 13.1–13.12

    Google Scholar 

  • Key JR, Santek D, Velden CS, Bormann N, Thepaut J-N, Riishojgaard LP, Zhu Y, Menzel WP (2003) Cloud-drift and water vapor winds in the polar regions from MODISIR. IEEE Trans Geosci Remote Sens 41(2):482–492

    Google Scholar 

  • Kutuza BG, Danilychev MV, Yakovlev OI (2016) Sputnikovyy monitoring Zemli: Mikrovolnovaya radiometriya atmosfery i poverhnosti (Satellite monitoring of the Earth: Microwave radiometry of the atmosphere and surface). LENAND, Moscow, 336p (in Russian)

    Google Scholar 

  • Kutuza BG et al (2019) Pervyy v mire eksperiment po mikrovolnovomu zondirovaniyu Zemli iz kosmosa na sputnike “Kosmos-243” (The world’s first experiment on microwave Earth sensing from space on the “Kosmos-243” satellite). Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 16(6):9–30 (in Russian)

    Google Scholar 

  • Lazzara MA, Dworak R, Santek DA, Hoover BT, Velden CS, Key JR (2014) High-latitude atmospheric motion vectors from composite satellite data. J Appl Meteorol Climatol 53(2):534–547

    Google Scholar 

  • Little JJ, Bulthoff HH, Poggio TA (1988) Parallel optical flow using local voting. In: Proceedings of the 2nd IEEE international conference on computer vision. Tampa, pp 454–459

    Google Scholar 

  • Little JJ, Verri A (1989) Analysis of differential and matching methods for optical flow. In: IEEE workshop on visual motion. Irvine, pp 173–180

    Google Scholar 

  • Liu WT (1986) Statistical relation between monthly mean precipitable water and surface-level humidity over global oceans. Mon Weather Rev 114(8):1591–1602

    Google Scholar 

  • Liu WT (1988) Moisture and latent heat flux variabilities in the Tropical Pacific derived from satellite data. J Geophys Res 93(C6):6749–6760

    Google Scholar 

  • Liu W, Ribeiro E (2011) A survey on image-based continuum-body motion estimation. Image Vis Comput 29(8):509–523

    Google Scholar 

  • Liu WT, Tang W (2005) Estimating moisture transport over oceans using space-based observations. J Geophys Res 110(D10):D10101. https://doi.org/10.1029/2004jd005300

  • Lucchitta BK, Ferguson HM (1986) Antarctica: measuring glacier velocity from satellite images. Science 234(4780):1105–1108

    Google Scholar 

  • Menzel WP (2001) Cloud tracking with satellite imagery: from the pioneering work of Ted Fujita to the present. Bull Am Meteorol Soc 82(1):33–47

    Google Scholar 

  • Nagel H-H (1987) On the estimation of optical flow: relations between different approaches and some new results. Artif Intell 33(3):299–324

    Google Scholar 

  • Nagel H-H, Enkelmann W (1986) An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans Pattern Anal Mach Intell 8(5):565–593

    Google Scholar 

  • Nam KM, Kim J-S, Park R-H, Shim YS (1995) A fast hierarchical motion vector estimation algorithm using mean pyramid. IEEE Trans Circuits Syst Video Technol 5(4):344–351

    Google Scholar 

  • Nerushev AF, Kramchaninova EK (2011) Method for determining atmospheric motion characteristics using measurements on geostationary meteorological satellites. Izv Atmos Ocean Phys 47(9):1104–1113

    Google Scholar 

  • Nieman SJ, Menzel WP, Hayden CM, Gray D, Wanzong ST, Velden CS, Daniels J (1997) Fully automated cloud-drift winds in NESDIS operations. Bull Am Meteorol Soc 78(6):1121–1133

    Google Scholar 

  • Observing Systems (2011) Observing systems capacity analysis and review tool. World Meteorological Organization. URL: https://www.wmo-sat.info/oscar/

  • Obukhov AM, Basharinov AE, Vasiliev YV, Gurvich AS, Kutuza BG, Mitnik LM (1971) Issledovaniye atmosfery po sobstvennomu radioteplovomu izlucheniyu na ISZ “Kosmos-243” (Investigation of the atmosphere using its own thermal radiation at the cosmos-243 satellite). Kosmicheskiye issledovaniya 9(1):66–73 (in Russian)

    Google Scholar 

  • Petty GW (1990) On the response of the special sensor microwave/imager to the marine environment—implications for atmospheric parameter retrievals. A dissertation … for the degree of doctor of philosophy. University of Washington, Seattle, 313p

    Google Scholar 

  • Pokrovskaya IV, Sharkov EA (2006) Tropical cyclones and tropical disturbances of the world ocean: chronology and evolution. Version 3.1 (1983–2005). M., Poligraph servis, 728p

    Google Scholar 

  • Richardson IEG (2003) H.264 and MPEG-4 video compression. Wiley, Chichester, 306p

    Google Scholar 

  • Robertson FR, Bosilovich MG, Roberts JB, Reichle RH, Adler R, Ricciardully L, Berg W, Huffman GJ (2014) Consistency of estimated global water cycle variations over the satellite era. J Clim 27(16):6135–6154

    Google Scholar 

  • Ruzmaikin A (2014) Klimat kak igra sluchaya (Climate as a game of chance). Uspekhi Fizicheskikh Nauk 184(3):297–311 (in Russian)

    Google Scholar 

  • Savorskiy VP (1992) Prostranstvenno-vremennaya structura SVCh radioteplovogo polya sistemy ocean-atmosfera (Spatiotemporal structure of the microwave radiothermal field of the ocean-atmosphere system). Dis. … Dr. Phys. Sciences. Moscow, 1992p (in Russian)

    Google Scholar 

  • Scambos TA, Dutkiewicz MJ, Wilson JC, Bindschadler RA (1992) Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sens Environ 42(3):177–186

    Google Scholar 

  • Sharkov EA (2003) Passive microwave remote sensing of the Earth: Physical foundations. Springer, Chichester

    Google Scholar 

  • Sharkov EA, Kuzmin AV, Vedenkin NN, Jeong S, Ermakov DM, Kvitka VE, Kozlova TO, Komarova NY, Minaev PY, Park IlH, Pashinov EV, Pozanenko AS, Prasolov VO, Sadovskii IN, Sazonov DS, Sterlyadkin VV, Khapin YB, Hong G, Chernenko AM (2019) Convergence space experiment: scientific objectives, onboard equipment, and methods of solving reverse problems. Izv Atmos Ocean Phys 55(9):1437–1456. https://doi.org/10.1134/s0001433819090469

  • Svejkovsky S (1988) Sea surface flow estimation from advanced very high resolution radiometer and costal zone color scanner satellite imagery: a verification study. J Geophys Res 93(C6):6735–6743

    Google Scholar 

  • Vastano AC, Borders SE (1984) Sea surface motion over an anticyclonic eddy on the Oyashio front. Remote Sens Environ 16(1):87–90

    Google Scholar 

  • Velden CS, Hayden CM, Nieman SJ, Menzel WP, Wanzong S, Goerss JS (1997) Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull Am Meteorol Soc 78(2):173–195

    Google Scholar 

  • Velden CS, Daniels J, Stettner D, Santek D, Key J, Dunion J, Holmlund K, Dengel G, Bresky W, Menzel P (2005) Recent innovations in deriving tropospheric winds from meteorological satellites. Bull Am Meteorol Soc 86(2):205–223

    Google Scholar 

  • Vogel C, Bauder A, Schindler K (2012) Optical flow for glacier motion estimation. ISPRS Ann Photogramm Remote Sens Spat Inf Sci I-3:359–364

    Google Scholar 

  • Weickert J, Schnörr C (2001) A theoretical framework for convex regularizers in PDE-based computation of image motion. Int J Comput Vis 45(3):245–264

    Google Scholar 

  • Weng F, Zou X, Wang X, Yang S, Goldberg MD (2012) Introduction to Suomi national polar-orbiting partnership advanced technology microwave sounder for numerical weather prediction and tropical cyclone applications. J Geophys Res 117(D19): D19112. https://doi.org/10.1029/2012jd018144

  • Wentz F (1997) A well-calibrated ocean algorithm for special sensor microwave/imager. J Geophys Res 102(C4):8703–8718

    Google Scholar 

  • Wimmers AJ, Velden CS (2011) Seamless advective blending of total precipitable water retrievals from polar orbiting satellites. J Appl Meteorol Climatol 50(5):1024–1036

    Google Scholar 

  • Yamaguchi Y, Tanaka S, Odajima T, Kamai T, Tsuchida S (2003) Detection of a landslide movement as geometric misregistration in image matching of SPOT HRV data of two different dates. Int J Remote Sens 24(18):3523–3534

    Google Scholar 

  • Zhu Y, Newell RE (1994) Atmospheric rivers and bombs. Geophys Res Lett 21(18):1999–2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry M. Ermakov .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ermakov, D.M. (2021). Fundamentals of Satellite Radiothermovision. In: Satellite Radiothermovision of Atmospheric Processes. Springer Praxis Books. Springer, Cham. https://doi.org/10.1007/978-3-030-57085-9_3

Download citation

Publish with us

Policies and ethics