Skip to main content

Search for Wino-Bino Production Using the Emulated Recursive Jigsaw Reconstruction Technique with Run 2 Data

  • Chapter
  • First Online:
Electroweak Physics at the Large Hadron Collider with the ATLAS Detector

Part of the book series: Springer Theses ((Springer Theses))

  • 129 Accesses

Abstract

The previous chapter, Chap. 8, introduces the Emulated Recursive Jigsaw Reconstruction (eRJR) technique, developed to emulate the RJR technique using simplified, laboratory frame variables. This technique, defined and validated in Sect. 8.3, reproduces the three-lepton excesses in the low-mass region and ISR regions in the laboratory frame using \(36.1~\text{ fb}^{-1}\) of pp collision data collected between 2015 and 2016 by the ATLAS detector at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The \(h_{\mathrm {damp}}\) parameter controls the transverse momentum \({p}_{T}\) of the first additional emission beyond the leading-order Feynman diagram in the parton shower and therefore regulates the high-\({p}_{T}\) emission against which the \(t\bar{t}\) system recoils.

References

  1. ATLAS Collaboration (2018) Search for chargino-neutralino production using recursive jigsaw reconstruction in final states with two or three charged leptons in proton-proton collisions at \(\sqrt{s}=13\) TeV with the ATLAS detector. Phys Rev D98(9):092012. http://dx.doi.org/10.1103/PhysRevD.98.092012, arXiv:1806.02293 [hep-ex]

  2. ATLAS Collaboration (2019) Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in \(\sqrt{s}\) = 13 TeV \(pp\) collisions with the ATLAS detector. Technical Report ATLAS-CONF-2019-020, CERN, Geneva, May. http://cds.cern.ch/record/2676597

  3. ATLAS Collaboration, Aad G et al (2020) Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in \(\sqrt{s}\) = 13 TeV \(pp\) collisions with the ATLAS detector. Phys Rev D101(7):072001. http://dx.doi.org/10.1103/PhysRevD.101.072001, arXiv:1912.08479 [hep-ex]

  4. ATLAS Collaboration (2017) Multi-Boson Simulation for \(\it 13\it \text{TeV}\) ATLAS Analyses, ATL-PHYS-PUB-2017-005. https://cds.cern.ch/record/2261933

  5. ATLAS Collaboration (2017) ATLAS simulation of boson plus jets processes in Run 2, ATL-PHYS-PUB-2017-006. https://cds.cern.ch/record/2261937

  6. Bothmann E et al (2019) Event Generation with Sherpa 2.2. SciPost Phys 7(3):034. http://dx.doi.org/10.21468/SciPostPhys.7.3.034, arXiv:1905.09127 [hep-ph]

  7. Gleisberg T, Höche S (2008) Comix, a new matrix element generator. JHEP 12:039. http://dx.doi.org/10.1088/1126-6708/2008/12/039, arXiv:0808.3674 [hep-ph]

  8. Schumann S, Krauss F (2008) A Parton shower algorithm based on Catani-Seymour dipole factorisation. JHEP 03:038. http://dx.doi.org/10.1088/1126-6708/2008/03/038, arXiv:0709.1027 [hep-ph]

  9. NNPDF Collaboration, Ball RD et al (2015) Parton distributions for the LHC Run II. JHEP 04:040. http://dx.doi.org/10.1007/JHEP04(2015)040, arXiv:1410.8849 [hep-ph]

  10. Höche S, Krauss F, Schonherr M, Siegert F (2012) A critical appraisal of NLO+PS matching methods. JHEP 09:049. http://dx.doi.org/10.1007/JHEP09(2012)049, arXiv:1111.1220 [hep-ph]

  11. Catani S, Krauss F, Kuhn R, Webber BR (2001) QCD matrix elements + parton showers. JHEP 11:063. http://dx.doi.org/10.1088/1126-6708/2001/11/063, arXiv:hep-ph/0109231

  12. Höche S, Krauss F, Schönherr M, Siegert F (2013) QCD matrix elements + parton showers: the NLO case. JHEP 04:027. http://dx.doi.org/10.1007/JHEP04(2013)027, arXiv:1207.5030 [hep-ph]

  13. Cascioli F, Maierhofer P, Pozzorini S (2012) Scattering amplitudes with open loops. Phys Rev Lett 108:111601. http://dx.doi.org/10.1103/PhysRevLett.108.111601, arXiv:1111.5206 [hep-ph]

  14. Anastasiou C, Dixon LJ, Melnikov K, Petriello F (2004) High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO. Phys Rev D 69:094008. http://dx.doi.org/10.1103/PhysRevD.69.094008, arXiv:hep-ph/0312266

  15. Alioli S, Nason P, Oleari C, Re E (2010) A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP 06:043. http://dx.doi.org/10.1007/JHEP06(2010)043, arXiv:1002.2581 [hep-ph]

  16. ATLAS Collaboration (2016) Studies on top-quark Monte Carlo modelling for Top2016, ATL-PHYS-PUB-2016-020. https://cds.cern.ch/record/2216168

  17. Sjöstrand T, Ask S, Christiansen JR, Corke R, Desai N, Ilten P, Mrenna S, Prestel S, Rasmussen CO, Skands PZ (2015) An introduction to PYTHIA 8.2. Comput Phys Commun 191:159. http://dx.doi.org/10.1016/j.cpc.2015.01.024, arXiv:1410.3012 [hep-ph]

  18. ATLAS Collaboration (2014) ATLAS Pythia 8 tunes to \(7 \text{ TeV }\) data, ATL-PHYS-PUB-2014-021. https://cds.cern.ch/record/1966419

  19. Ball RD et al (2013) Parton distributions with LHC data. Nucl Phys B 867:244. http://dx.doi.org/10.1016/j.nuclphysb.2012.10.003, arXiv:1207.1303 [hep-ph]

  20. Czakon M, Mitov A (2014) Top++: A program for the calculation of the top-pair cross-section at hadron colliders. Comput Phys Commun 185:2930. http://dx.doi.org/10.1016/j.cpc.2014.06.021, arXiv:1112.5675 [hep-ph]

  21. ATLAS Collaboration (2016) The Pythia 8 A3 tune description of ATLAS minimum bias and inelastic measurements incorporating the Donnachie–Landshoff diffractive model, ATL-PHYS-PUB-2016-017. https://cds.cern.ch/record/2206965

  22. Alwall J, Frederix R, Frixione S, Hirschi V, Maltoni F, Mattelaer O, Shao HS, Stelzer T, Torrielli P, Zaro M (2014) The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07:079. http://dx.doi.org/10.1007/JHEP07(2014)079, arXiv:1405.0301 [hep-ph]

  23. ATLAS Collaboration (2014) Measurement of the \(Z/\gamma ^*\) boson transverse momentum distribution in \(pp\) collisions at \(\sqrt{s} = 7\;\text{ TeV }\) with the ATLAS detector. JHEP 09:145. http://dx.doi.org/10.1007/JHEP09(2014)145, arXiv:1406.3660 [hep-ex]

  24. Pumplin J et al (2002) New generation of parton distributions with uncertainties from global QCD analysis. JHEP 07:012. http://dx.doi.org/10.1088/1126-6708/2002/07/012, arXiv:hep-ph/0201195

  25. LHC Higgs Cross Section Working Group Collaboration, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector. arXiv:1610.07922 [hep-ph]

  26. Fuks B, Klasen M, Lamprea DR, Rothering M (2013) Precision predictions for electroweak superpartner production at hadron colliders with Resummino. Eur Phys J C 73:2480. http://dx.doi.org/10.1140/epjc/s10052-013-2480-0, arXiv:1304.0790 [hep-ph]

  27. Lange DJ (2001) The EvtGen particle decay simulation package. Nucl Instrum Meth A 462:152. http://dx.doi.org/10.1016/S0168-9002(01)00089-4

  28. ATLAS Collaboration (2010) The ATLAS simulation infrastructure. Eur Phys J C 70:823. http://dx.doi.org/10.1140/epjc/s10052-010-1429-9, arXiv:1005.4568 [physics.ins-det]

  29. GEANT4 Collaboration, Agostinelli S et al (2003) GEANT4—a simulation toolkit. Nucl Instrum Meth A 506:250 http://dx.doi.org/10.1016/S0168-9002(03)01368-8

  30. ATLAS Collaboration (2012) Measurement of the \(W W\) cross section in \(\sqrt{s} = 7\,\text{ TeV }\)\(pp\) collisions with the ATLAS detector and limits on anomalous gauge couplings. Phys Lett B 712:289. http://dx.doi.org/10.1016/j.physletb.2012.05.003, arXiv:1203.6232 [hep-ex]

  31. Prospects for Higgs Boson Searches using the \(H\rightarrow WW^{(*)}\rightarrow \ell \nu \ell \nu \) Decay Mode with the ATLAS Detector for 10 TeV. Technical Report, ATL-PHYS-PUB-2010-005, CERN, Geneva, Jun, 2010. https://cds.cern.ch/record/1270568

  32. ATLAS Collaboration (2017) Jet energy scale measurements and their systematic uncertainties in proton–proton collisions at \(\sqrt{s} = 13\;\text{ TeV }\) with the ATLAS detector. Phys Rev D 96:072002. http://dx.doi.org/10.1103/PhysRevD.96.072002, arXiv:1703.09665 [hep-ex]

  33. ATLAS Collaboration (2015) Jet energy measurement and its systematic uncertainty in proton–proton collisions at \(\sqrt{s} = 7\;\text{ TeV }\) with the ATLAS detector. Eur Phys J C 75:17. http://dx.doi.org/10.1140/epjc/s10052-014-3190-y, arXiv:1406.0076 [hep-ex]

  34. ATLAS Collaboration (2019) Electron and photon energy calibration with the ATLAS detector using 2015–2016 LHC proton–proton collision data. JINST 14:P03017. http://dx.doi.org/10.1088/1748-0221/14/03/P03017, arXiv:1812.03848 [hep-ex]

  35. ATLAS Collaboration (2016) Muon reconstruction performance of the ATLAS detector in proton–proton collision data at \(\sqrt{s} = 13\;\text{ TeV }\). Eur Phys J C 76:292. http://dx.doi.org/10.1140/epjc/s10052-016-4120-y, arXiv:1603.05598 [hep-ex]

  36. ATLAS Collaboration (2018) Performance of missing transverse momentum reconstruction with the ATLAS detector using proton-proton collisions at \(\sqrt{s}\) = 13 TeV. Eur Phys J C78(11):903. http://dx.doi.org/10.1140/epjc/s10052-018-6288-9, arXiv:1802.08168 [hep-ex]

  37. ATLAS Collaboration (2015) Performance of missing transverse momentum reconstruction with the ATLAS detector in the first proton–proton collisions at \(\sqrt{s} = 13 \text{ TeV }\), ATL-PHYS-PUB-2015-027. https://cds.cern.ch/record/2037904

  38. ATLAS Collaboration (2019) Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton-proton collision data at \(\sqrt{s}\) = 13 TeV. Submitted to: Eur Phys J. arXiv:1902.04655 [physics.ins-det]

  39. ATLAS Collaboration (2016) Performance of pile-up mitigation techniques for jets in \(pp\) collisions at \(\sqrt{s} = 8\;\text{ TeV }\) using the ATLAS detector. Eur Phys J C 76:581. http://dx.doi.org/10.1140/epjc/s10052-016-4395-z, arXiv:1510.03823 [hep-ex]

  40. ATLAS Collaboration (2014) Tagging and suppression of pileup jets with the ATLAS detector, ATLAS-CONF-2014-018. https://cds.cern.ch/record/1700870

  41. ATLAS Collaboration (2016) Luminosity determination in \(pp\) collisions at \(\sqrt{s} = 8\;\text{ TeV }\) using the ATLAS detector at the LHC. Eur Phys J C 76:653. http://dx.doi.org/10.1140/epjc/s10052-016-4466-1, arXiv:1608.03953 [hep-ex]

  42. Avoni G et al (2018) The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS. JINST 13(07):P07017. http://dx.doi.org/10.1088/1748-0221/13/07/P07017

  43. ATLAS Collaboration (2018) Measurement of \(W^{\pm }Z\) production cross sections and gauge boson polarisation in \(pp\) collisions at \(\sqrt{s} = 13 \text{ TeV }\) with the ATLAS detector, ATLAS-CONF-2018-034. https://cds.cern.ch/record/2630187

  44. Dulat S, Hou T-J, Gao J, Guzzi M, Huston J, Nadolsky P, Pumplin J, Schmidt C, Stump D, Yuan CP (2016) New parton distribution functions from a global analysis of quantum chromodynamics. Phys Rev D 93(3):033006. http://dx.doi.org/10.1103/PhysRevD.93.033006, arXiv:1506.07443 [hep-ph]

  45. Harland-Lang LA, Martin AD, Motylinski P, Thorne RS (2015) Parton distributions in the LHC era: MMHT 2014 PDFs. Eur Phys J C 75(5):204. http://dx.doi.org/10.1140/epjc/s10052-015-3397-6, arXiv:1412.3989 [hep-ph]

  46. Baak M, Besjes GJ, Cte D, Koutsman A, Lorenz J, Short D (2015) HistFitter software framework for statistical data analysis. Eur Phys J C 75:153. http://dx.doi.org/10.1140/epjc/s10052-015-3327-7, arXiv:1410.1280 [hep-ex]

  47. Cousins RD, Linnemann JT, Tucker J (2008) Evaluation of three methods for calculating statistical significance when incorporating a systematic uncertainty into a test of the background-only hypothesis for a Poisson process. Nuclear Inst. Methods Phys Res Sect. A: Accel Spectrom Detect Assoc Equip 595(2):480–501. http://dx.doi.org/https://doi.org/10.1016/j.nima.2008.07.086, http://www.sciencedirect.com/science/article/pii/S0168900208010255

  48. Read AL (2002) Presentation of search results: the CL(s) technique. J Phys G28:2693–2704. http://dx.doi.org/10.1088/0954-3899/28/10/313

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elodie Resseguie .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Resseguie, E. (2020). Search for Wino-Bino Production Using the Emulated Recursive Jigsaw Reconstruction Technique with Run 2 Data. In: Electroweak Physics at the Large Hadron Collider with the ATLAS Detector. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-57016-3_9

Download citation

Publish with us

Policies and ethics