Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 161 Accesses

Abstract

The Large Hadron Collider (LHC) [1] is a two-ring superconducting hadron accelerator and collider located at the European Organization for Nuclear Research (CERN) center at the French-Switzerland border. The LHC is installed in the 27 km tunnel constructed for the Large Electron Positron Collider (LEP) experiment  [2] which lies between 45 and 170 m below ground. In 1996, the construction of a 14 TeV LHC was approved  [3]. The LEP experiment ran from 1989 to 2000 when it was closed to liberate the tunnel for the LHC. While the LEP experiment collided electrons and positrons, the LHC primarily collides bunches of protons at four interaction points around the ring where four independent experiments are located: ATLAS  [4], CMS  [5], LHCb  [6], and ALICE  [7]. ATLAS and CMS are general purpose detectors aiming to run at high luminosities, with peak luminosity of \(L = 2\times 10^{34} \text { cm}^{-2}\text { s}^{-1}\). LHCb is designed to study b-hadrons with peak luminosity of \(L = 2\times 10^{32} \text { cm}^{-2}\text { s}^{-1}\) and ALICE is designed to study heavy ion collisions with peak luminosity of \(L = 2\times 10^{27} \text { cm}^{-2}\text { s}^{-1}\). The LHC complex and the four experiments are shown in Fig. 3.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans LR, Bryant P (2008) LHC machine. JINST 3:S08001. https://cds.cern.ch/record/1129806. This report is an abridged version of the LHC Design Report (CERN-2004-003)

  2. LEP design report. CERN, Geneva, 1984. https://cds.cern.ch/record/102083. Copies shelved as reports in LEP, PS and SPS libraries

  3. LHC Study Group Collaboration, Pettersson TS, Lefvre P (1995) The large hadron collider: conceptual design. Technical report CERN-AC-95-05-LHC. https://cds.cern.ch/record/291782

  4. ATLAS Collaboration (2008) The ATLAS experiment at the CERN large hadron collider. JINST 3:S08003

    Google Scholar 

  5. Collaboration CMS (2008) The CMS experiment at the CERN LHC. JINST 3:S08004

    ADS  Google Scholar 

  6. LHCb Collaboration, Alves AA, Jr. et al (2008) The LHCb detector at the LHC. JINST 3:S08005

    Google Scholar 

  7. ALICE Collaboration, Aamodt K, et al (2008) The ALICE experiment at the CERN LHC. JINST 3:S08002

    Google Scholar 

  8. Mobs E, The CERN accelerator complex. Complexe des accelerateurs du CERN. https://cds.cern.ch/record/2197559. General photo

  9. Arnaudon L, et al (2006) Linac4 technical design report. Technical report CERN-AB-2006-084. CARE-Note-2006-022-HIPPI, CERN, Geneva. http://cds.cern.ch/record/1004186. Revised version submitted on 2006-12-14 09:00:40

  10. AC Team (1999) Diagram of an LHC dipole magnet. Schema d’un aimant dipole du LHC. https://cds.cern.ch/record/40524

  11. Luminosity Public Results Run 2. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2

  12. Luminosity Public Results. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults

  13. ATLAS Collaboration. Expected performance of the ATLAS experiment - detector, trigger and physics. arXiv:0901.0512 [hep-ex]

  14. ATLAS Collaboration (2017) Performance of the ATLAS track reconstruction algorithms in dense environments in LHC run 2. Eur Phys J C77, no 10:673. arXiv:1704.07983 [hep-ex]

  15. ATLAS Collaboration (2008) ATLAS pixel detector electronics and sensors. JINST 3:P07007

    Google Scholar 

  16. ATLAS Collaboration (2010) ATLAS insertable B-layer technical design report. Technical report CERN-LHCC-2010-013. ATLAS-TDR-19. https://cds.cern.ch/record/1291633

  17. ATLAS Collaboration (2014) Operation and performance of the ATLAS semiconductor tracker. JINST 9:P08009. arXiv:1404.7473 [hep-ex]

  18. ATLAS TRT Collaboration (2008) The ATLAS Transition Radiation Tracker (TRT) proportional drift tube: design and performance. JINST 3:P02013

    ADS  Google Scholar 

  19. ATLAS Collaboration (2008) The ATLAS TRT end-cap detectors. JINST 3:P10003

    Google Scholar 

  20. ATLAS TRT Collaboration (2008) The ATLAS TRT barrel detector. JINST 3:P02014

    ADS  Google Scholar 

  21. Fratina S, Klinkby E (2010) The geometry of the ATLAS transition radiation tracker. Technical report ATL-COM-INDET-2010-002, CERN, Geneva. https://cds.cern.ch/record/1232064

  22. ATLAS Collaboration (2011) Particle identification performance of the ATLAS transition radiation tracker. Technical report ATLAS-CONF-2011-128, CERN, Geneva. https://cds.cern.ch/record/1383793

  23. Particle Data Group Collaboration, Tanabashi M, et al (2008) Review of particle physics. Phys Rev D 98, no. 3:030001

    Google Scholar 

  24. ATLAS Collaboration (2008) The ATLAS TRT electronics. JINST 3:P06007

    Google Scholar 

  25. ATLAS Collaboration (2015) Performance of the ATLAS muon trigger in pp collisions at \(\sqrt{s}=8\) TeV. Eur Phys J C75:120. arXiv:1408.3179 [hep-ex]

  26. Pequenao J, Schaffner P (2013) How ATLAS detects particles: diagram of particle paths in the detector. https://cds.cern.ch/record/1505342

  27. Fruhwirth R (1987) Application of Kalman filtering to track and vertex fitting. Nucl Instrum Meth A 262:444–450

    Article  ADS  Google Scholar 

  28. Cornelissen TG, Elsing M, Gavrilenko I, Laporte JF, Liebig W, Limper M, Nikolopoulos K, Poppleton A, Salzburger A (2008) The global chi**2 track fitter in ATLAS. J Phys Conf Ser 119:032013

    Article  Google Scholar 

  29. ATLAS Collaboration (2019) Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton-proton collision data at \(\sqrt{s}\) = 13 TeV. Submitted to: Eur Phys J. arXiv:1902.04655 [physics.ins-det]

  30. Lampl W, Laplace S, Lelas D, Loch P, Ma H, Menke S, Rajagopalan S, Rousseau D, Snyder S, Unal G (2008)Calorimeter clustering algorithms: description and performance. Technical report ATL-LARG-PUB-2008-002. ATL-COM-LARG-2008-003, CERN, Geneva. https://cds.cern.ch/record/1099735

  31. ATLAS Collaboration (2017) Topological cell clustering in the ATLAS calorimeters and its performance in LHC run 1. Eur Phys J C77:490. arXiv:1603.02934 [hep-ex]

  32. ATLAS Collaboration (2019) Electron and photon energy calibration with the ATLAS detector using 2015–2016 LHC proton–proton collision data. JINST 14:P03017. arXiv:1812.03848 [hep-ex]

  33. ATLAS Collaboration (2016) Muon reconstruction performance of the ATLAS detector in proton proton collision data at \(\sqrt{s}\) =13 TeV. Eur Phys J C 76, no. 5:292. arXiv:1603.05598 [hep-ex]

  34. Cacciari M, Salam GP, Soyez G (2008) The anti-\(k_t\) jet clustering algorithm. JHEP 04:063 arXiv:0802.1189 [hep-ph]

    Article  ADS  Google Scholar 

  35. Cacciari M, Salam GP, Soyez G (2012) FastJet user manual. Eur Phys J C 72:1896 arXiv:1111.6097 [hep-ph]

    Article  ADS  Google Scholar 

  36. Schwartz MD (2018) TASI lectures on collider physics. In: Proceedings, theoretical advanced study institute in elementary particle physics : anticipating the next discoveries in particle physics (TASI 2016): Boulder, CO, USA, June 6-July 1, 2016, pp 65–100. arXiv:1709.04533 [hep-ph]

  37. ATLAS Collaboration (2018) Measurements of b-jet tagging efficiency with the ATLAS detector using \(t\overline{t}\) events at \(\sqrt{s}=13\) TeV. JHEP 08:089. arXiv:1805.01845 [hep-ex]

  38. ATLAS Collaboration (2018) Performance of missing transverse momentum reconstruction with the ATLAS detector using proton-proton collisions at \(\sqrt{s}\) = 13 TeV. Eur Phys J C78, no 11:903. arXiv:1802.08168 [hep-ex]

  39. ATLAS TDAQ Collaboration (2016) The ATLAS data acquisition and high level trigger system. JINST 11, no 06:P06008

    Google Scholar 

  40. ATLAS Collaboration (2017) Performance of the ATLAS trigger system in 2015. Eur Phys J C77, no 5:317. arXiv:1611.09661 [hep-ex]

  41. ATLAS Collaboration (2018) Trigger menu in 2017. Technical report ATL-DAQ-PUB-2018-002, CERN, Geneva. https://cds.cern.ch/record/2625986

  42. Trigger Operation Public Results. https://twiki.cern.ch/twiki/pub/AtlasPublic/TriggerOperationPublicResults/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elodie Resseguie .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Resseguie, E. (2020). LHC and the ATLAS Detector. In: Electroweak Physics at the Large Hadron Collider with the ATLAS Detector. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-57016-3_3

Download citation

Publish with us

Policies and ethics