Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 136 Accesses

Abstract

This chapter introduces the theoretical framework for the work presented in this thesis. The Standard Model (SM) particles will be introduced before building the SM from symmetry arguments. Deficiencies of the SM will be described before introducing supersymmetry as a proposed solution to the open questions of the SM. The formalism presented summarizes the following books by Thomson  [1], Langacker  [2], Schwartz  [3], Halzen  [4], and Georgi  [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson M (2013) Modern particle physics. Cambridge University Press, New York

    Google Scholar 

  2. Langacker P (2010) The standard model and beyond. CRC Press, Boca Raton

    Google Scholar 

  3. Schwartz MD (2014) Quantum field theory and the standard model. Cambridge University Press, Cambridge

    Google Scholar 

  4. Halzen F, Martin AD (1984) Quarks and leptons: an introductory course in modern particle physics. Wiley, New York

    Google Scholar 

  5. Georgi H (1984) Weak interactions and modern particle theory. Benjamin/Cummings, Menlo Park

    Google Scholar 

  6. Burgard C, Example: standard model of physics. http://www.texample.net/tikz/examples/model-physics/

  7. ATLAS Collaboration (2012) Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys Lett B716:1–29. arXiv:1207.7214 [hep-ex]

  8. CMS Collaboration (2012) Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys Lett B716:30–61. arXiv:1207.7235 [hep-ex]

  9. ATLAS Collaboration (2018) Summary plots from the ATLAS Standard Model physics group. https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM/

  10. Rubin VC, Ford WK Jr (1970) Rotation of the andromeda nebula from a spectroscopic survey of emission regions. Astrophys J 159:379–403

    Article  ADS  Google Scholar 

  11. Rubin VC, Thonnard N, Ford WK Jr (1980) Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/. Astrophys J 238:471

    Article  ADS  Google Scholar 

  12. Clowe D, Gonzalez A, Markevitch M (2004) Weak lensing mass reconstruction of the interacting cluster 1E0657-558: direct evidence for the existence of dark matter. Astrophys J 604:596–603. arXiv:astro-ph/0312273 [astro-ph]

  13. Markevitch M, Gonzalez AH, Clowe D, Vikhlinin A, David L, Forman W, Jones C, Murray S, Tucker W (2004) Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56. Astrophys J 606:819–824. arXiv:astro-ph/0309303 [astro-ph]

  14. Martin SP (1998) A Supersymmetry primer. arXiv:hep-ph/9709356 [hep-ph]. [Adv Ser Direct High Energy Phys 18:1 (1998)]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elodie Resseguie .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Resseguie, E. (2020). Theoretical Framework. In: Electroweak Physics at the Large Hadron Collider with the ATLAS Detector. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-57016-3_2

Download citation

Publish with us

Policies and ethics