Skip to main content

Induced Pluripotent Stem Cell-Derived Vascular Smooth Muscle Cells for Vascular Regeneration

  • Chapter
  • First Online:
Stem Cell Therapy for Vascular Diseases
  • 502 Accesses

Abstract

Vascular smooth muscle cells (VSMCs) play a critical role during the development of blood vessels and cardiovascular disease progression. Although autologous VSMCs have been used in vascular tissue engineering, it would be desirable to have a renewable source of these cells. To this end, human-induced pluripotent stem cells (hiPSCs) have provided an attractive approach to generate patient-specific VSMCs in a large scale and have been spearheading the development of novel vascular regeneration strategies, disease modeling, and drug screening for the last decade. This book chapter concisely discusses the progress in the field of vascular regeneration strategies, reprogramming, and VSMC differentiation methods and examines current hiPSC-VSMC-based vascular constructs for regenerative therapy and disease modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mortality GBD, Causes of Death C. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1459–544.

    Article  Google Scholar 

  2. Greco Song HH, Rumma RT, Ozaki CK, Edelman ER, Chen CS. Vascular tissue engineering: progress, challenges, and clinical promise. Cell Stem Cell. 2018;22:608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. DeBakey ME, Crawford ES, Garrett HE, Beall AC Jr, Howell JF. Surgical considerations in the treatment of aneurysms of the thoraco-abdominal aorta. Ann Surg. 1965;162:650–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sciarretta JD, Macedo FI, Otero CA, Figueroa JN, Pizano LR, Namias N. Management of traumatic popliteal vascular injuries in a level I trauma center: a 6-year experience. Int J Surg. 2015;18:136–41.

    Article  PubMed  Google Scholar 

  5. Schild AF, Perez E, Gillaspie E, Seaver C, Livingstone J, Thibonnier A. Arteriovenous fistulae vs. arteriovenous grafts: a retrospective review of 1,700 consecutive vascular access cases. J Vasc Access. 2008;9:231–5.

    Article  CAS  PubMed  Google Scholar 

  6. Chard RB, Johnson DC, Nunn GR, Cartmill TB. Aorta-coronary bypass grafting with polytetrafluoroethylene conduits. Early and late outcome in eight patients. J Thorac Cardiovasc Surg. 1987;94:132–4.

    Article  CAS  PubMed  Google Scholar 

  7. Shum-Tim D, Stock U, Hrkach J, Shinoka T, Lien J, Moses MA, et al. Tissue engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg. 1999;68:2298–304. discussion 305

    Article  CAS  PubMed  Google Scholar 

  8. Canver CC. Conduit options in coronary artery bypass surgery. Chest. 1995;108:1150–5.

    Article  CAS  PubMed  Google Scholar 

  9. Sun G, Gerecht S. Vascular regeneration: engineering the stem cell microenvironment. Regen Med. 2009;4:435–47.

    Article  PubMed  Google Scholar 

  10. Park KM, Gerecht S. Harnessing developmental processes for vascular engineering and regeneration. Development. 2014;141:2760–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lowenthal J, Gerecht S. Stem cell-derived vasculature: a potent and multidimensional technology for basic research, disease modeling, and tissue engineering. Biochem Biophys Res Commun. 2016;473:733–42.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang WJ, Liu W, Cui L, Cao Y. Tissue engineering of blood vessel. J Cell Mol Med. 2007;11:945–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vaz CM, van Tuijl S, Bouten CV, Baaijens FP. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique. Acta Biomater. 2005;1:575–82.

    Article  CAS  PubMed  Google Scholar 

  14. Ziegler T, Nerem RM. Tissue engineering a blood vessel: regulation of vascular biology by mechanical stresses. J Cell Biochem. 1994;56:204–9.

    Article  CAS  PubMed  Google Scholar 

  15. Cong X, Zhang SM, Batty L, Luo J. Application of human induced pluripotent stem cells in generating tissue-engineered blood vessels as vascular grafts. Stem Cells Dev. 2019;28:1581–94.

    Article  PubMed  Google Scholar 

  16. Sundaram S, Niklason LE. Smooth muscle and other cell sources for human blood vessel engineering. Cells Tissues Organs. 2012;195:15–25.

    Article  CAS  PubMed  Google Scholar 

  17. Lawson JH, Glickman MH, Ilzecki M, Jakimowicz T, Jaroszynski A, Peden EK, et al. Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. Lancet. 2016;387:2026–34.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dash BC, Jiang Z, Suh C, Qyang Y. Induced pluripotent stem cell-derived vascular smooth muscle cells: methods and application. Biochem J. 2015;465:185–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ayoubi S, Sheikh SP, Eskildsen TV. Human induced pluripotent stem cell-derived vascular smooth muscle cells: differentiation and therapeutic potential. Cardiovasc Res. 2017;113:1282–93.

    Article  CAS  PubMed  Google Scholar 

  20. Klein D. iPSCs-based generation of vascular cells: reprogramming approaches and applications. Cell Mol Life Sci. 2018;75:1411–33.

    Article  CAS  PubMed  Google Scholar 

  21. Maguire EM, Xiao Q, Xu Q. Differentiation and application of induced pluripotent stem cell-derived vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2017;37:2026–37.

    Article  CAS  PubMed  Google Scholar 

  22. Ji H, Kim HS, Kim HW, Leong KW. Application of induced pluripotent stem cells to model smooth muscle cell function in vascular diseases. Curr Opin Biomed Eng. 2017;1:38–44.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Smith Q, Gerecht S. Going with the flow: microfluidic platforms in vascular tissue engineering. Curr Opin Chem Eng. 2014;3:42–50.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231:397–400.

    Article  CAS  PubMed  Google Scholar 

  25. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, et al. Functional arteries grown in vitro. Science. 1999;284:489–93.

    Article  CAS  PubMed  Google Scholar 

  26. Syedain ZH, Meier LA, Bjork JW, Lee A, Tranquillo RT. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials. 2011;32:714–22.

    Article  CAS  PubMed  Google Scholar 

  27. L'Heureux N, Dusserre N, Konig G, Victor B, Keire P, Wight TN, et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med. 2006;12:361–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Syedain Z, Reimer J, Lahti M, Berry J, Johnson S, Bianco R, et al. Corrigendum: tissue engineering of acellular vascular grafts capable of somatic growth in young lambs. Nat Commun. 2017;8:14297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Syedain ZH, Graham ML, Dunn TB, O'Brien T, Johnson SL, Schumacher RJ, et al. A completely biological "off-the-shelf" arteriovenous graft that recellularizes in baboons. Sci Transl Med. 2017;9

    Google Scholar 

  30. Fernandez CE, Yen RW, Perez SM, Bedell HW, Povsic TJ, Reichert WM, et al. Human vascular microphysiological system for in vitro drug screening. Sci Rep. 2016;6:21579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Strobel HA, Hookway TA, Piola M, Fiore GB, Soncini M, Alsberg E, et al. Assembly of tissue-engineered blood vessels with spatially controlled heterogeneities. Tissue Eng Part A. 2018;24:1492–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Konig G, McAllister TN, Dusserre N, Garrido SA, Iyican C, Marini A, et al. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials. 2009;30:1542–50.

    Article  CAS  PubMed  Google Scholar 

  33. L’Heureux N, Paquet S, Labbe R, Germain L, Auger FA. A completely biological tissue-engineered human blood vessel. FASEB J. 1998;12:47–56.

    PubMed  Google Scholar 

  34. Niklason LE, Abbott W, Gao J, Klagges B, Hirschi KK, Ulubayram K, et al. Morphologic and mechanical characteristics of engineered bovine arteries. J Vasc Surg. 2001;33:628–38.

    Article  CAS  PubMed  Google Scholar 

  35. Solan A, Niklason L. Age effects on vascular smooth muscle: an engineered tissue approach. Cell Transplant. 2005;14:481–8.

    Article  PubMed  Google Scholar 

  36. Han J, Liu JY, Swartz DD, Andreadis ST. Molecular and functional effects of organismal ageing on smooth muscle cells derived from bone marrow mesenchymal stem cells. Cardiovasc Res. 2010;87:147–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu JY, Swartz DD, Peng HF, Gugino SF, Russell JA, Andreadis ST. Functional tissue-engineered blood vessels from bone marrow progenitor cells. Cardiovasc Res. 2007;75:618–28.

    Article  CAS  PubMed  Google Scholar 

  38. Gong Z, Calkins G, Cheng EC, Krause D, Niklason LE. Influence of culture medium on smooth muscle cell differentiation from human bone marrow-derived mesenchymal stem cells. Tissue Eng Part A. 2009;15:319–30.

    Article  CAS  PubMed  Google Scholar 

  39. Wang C, Cen L, Yin S, Liu Q, Liu W, Cao Y, et al. A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells. Biomaterials. 2010;31:621–30.

    Article  PubMed  Google Scholar 

  40. Peng HF, Liu JY, Andreadis ST, Swartz DD. Hair follicle-derived smooth muscle cells and small intestinal submucosa for engineering mechanically robust and vasoreactive vascular media. Tissue Eng Part A. 2011;17:981–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu JY, Peng HF, Andreadis ST. Contractile smooth muscle cells derived from hair-follicle stem cells. Cardiovasc Res. 2008;79:24–33.

    Article  CAS  PubMed  Google Scholar 

  42. Liu JY, Peng HF, Gopinath S, Tian J, Andreadis ST. Derivation of functional smooth muscle cells from multipotent human hair follicle mesenchymal stem cells. Tissue Eng Part A. 2010;16:2553–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ceccarelli J, Putnam AJ. Sculpting the blank slate: how fibrin’s support of vascularization can inspire biomaterial design. Acta Biomater. 2014;10:1515–23.

    Article  CAS  PubMed  Google Scholar 

  44. Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23:H41–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Park KM, Gerecht S. Hypoxia-inducible hydrogels. Nat Commun. 2014;5:4075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Trappmann B, Baker BM, Polacheck WJ, Choi CK, Burdick JA, Chen CS. Matrix degradability controls multicellularity of 3D cell migration. Nat Commun. 2017;8:371.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Han H, Ning H, Liu S, Lu QP, Fan Z, Lu H, et al. Silk biomaterials with vascularization capacity. Adv Funct Mater. 2016;26:421–36.

    Article  CAS  PubMed  Google Scholar 

  48. Cuchiara MP, Gould DJ, McHale MK, Dickinson ME, West JL. Integration of self-assembled microvascular networks with microfabricated PEG-based hydrogels. Adv Funct Mater. 2012;22:4511–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DH, Cohen DM, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11:768–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Heintz KA, Bregenzer ME, Mantle JL, Lee KH, West JL, Slater JH. Fabrication of 3D biomimetic microfluidic networks in hydrogels. Adv Healthc Mater. 2016;5:2153–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang B, Montgomery M, Chamberlain MD, Ogawa S, Korolj A, Pahnke A, et al. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat Mater. 2016;15:669–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim S, Lee H, Chung M, Jeon NL. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip. 2013;13:1489–500.

    Article  CAS  PubMed  Google Scholar 

  53. Nguyen DH, Stapleton SC, Yang MT, Cha SS, Choi CK, Galie PA, et al. Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc Natl Acad Sci U S A. 2013;110:6712–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Galie PA, Nguyen DH, Choi CK, Cohen DM, Janmey PA, Chen CS. Fluid shear stress threshold regulates angiogenic sprouting. Proc Natl Acad Sci U S A. 2014;111:7968–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bekhite MM, Finkensieper A, Rebhan J, Huse S, Schultze-Mosgau S, Figulla HR, et al. Hypoxia, leptin, and vascular endothelial growth factor stimulate vascular endothelial cell differentiation of human adipose tissue-derived stem cells. Stem Cells Dev. 2014;23:333–51.

    Article  CAS  PubMed  Google Scholar 

  56. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148:399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kusuma S, Peijnenburg E, Patel P, Gerecht S. Low oxygen tension enhances endothelial fate of human pluripotent stem cells. Arterioscler Thromb Vasc Biol. 2014;34:913–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moya ML, Hsu YH, Lee AP, Hughes CC, George SC. In vitro perfused human capillary networks. Tissue Eng Part C Methods. 2013;19:730–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Whisler JA, Chen MB, Kamm RD. Control of perfusable microvascular network morphology using a multiculture microfluidic system. Tissue Eng Part C Methods. 2014;20:543–52.

    Article  CAS  PubMed  Google Scholar 

  60. Lin SL, Kisseleva T, Brenner DA, Duffield JS. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol. 2008;173:1617–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jeon JS, Bersini S, Whisler JA, Chen MB, Dubini G, Charest JL, et al. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Integr Biol (Camb). 2014;6:555–63.

    Article  CAS  Google Scholar 

  62. Jamieson J, Macklin B, Gerecht S. Pericytes derived from human pluripotent stem cells. Adv Exp Med Biol. 2018;1109:111–24.

    Article  CAS  PubMed  Google Scholar 

  63. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  64. Takagi S, Mandai M, Gocho K, Hirami Y, Yamamoto M, Fujihara M, et al. Evaluation of transplanted autologous induced pluripotent stem cell-derived retinal pigment epithelium in exudative age-related macular degeneration. Ophthalmol Retina. 2019;3:850–9.

    Article  PubMed  Google Scholar 

  65. Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. 2017;16:115–30.

    Article  CAS  PubMed  Google Scholar 

  66. Soldner F, Jaenisch R. Medicine. iPSC disease modeling. Science. 2012;338:1155–6.

    Article  PubMed  Google Scholar 

  67. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451:141–6.

    Article  CAS  PubMed  Google Scholar 

  68. Chen IY, Matsa E, Wu JC. Induced pluripotent stem cells: at the heart of cardiovascular precision medicine. Nat Rev Cardiol. 2016;13:333–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med. 2013;19:998–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, et al. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci U S A. 2011;108:14234–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science. 2008;322:945–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.

    Article  CAS  PubMed  Google Scholar 

  73. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8:409–12.

    Article  CAS  PubMed  Google Scholar 

  74. Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, et al. A nonviral minicircle vector for deriving human iPS cells. Nat Methods. 2010;7:197–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell. 2009;136:964–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009;458:766–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7:618–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sandmaier SE, Telugu BP. MicroRNA-mediated reprogramming of somatic cells into induced pluripotent stem cells. Methods Mol Biol. 2015;1330:29–36.

    Article  CAS  PubMed  Google Scholar 

  79. Qin H, Zhao A, Fu X. Small molecules for reprogramming and transdifferentiation. Cell Mol Life Sci. 2017;74:3553–75.

    Article  CAS  PubMed  Google Scholar 

  80. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 2009;4:472–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee TH, Song SH, Kim KL, Yi JY, Shin GH, Kim JY, et al. Functional recapitulation of smooth muscle cells via induced pluripotent stem cells from human aortic smooth muscle cells. Circ Res. 2010;106:120–8.

    Article  CAS  PubMed  Google Scholar 

  82. Ge X, Ren Y, Bartulos O, Lee MY, Yue Z, Kim KY, et al. Modeling supravalvular aortic stenosis syndrome with human induced pluripotent stem cells. Circulation. 2012;126:1695–704.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Dash BC, Levi K, Schwan J, Luo J, Bartulos O, Wu H, et al. Tissue-engineered vascular rings from human iPSC-derived smooth muscle cells. Stem Cell Rep. 2016;7:19–28.

    Article  CAS  Google Scholar 

  84. El-Mounayri O, Mihic A, Shikatani EA, Gagliardi M, Steinbach SK, Dubois N, et al. Serum-free differentiation of functional human coronary-like vascular smooth muscle cells from embryonic stem cells. Cardiovasc Res. 2013;98:125–35.

    Article  CAS  PubMed  Google Scholar 

  85. Cao N, Liang H, Huang J, Wang J, Chen Y, Chen Z, et al. Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions. Cell Res. 2013;23:1119–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Park SW, Jun Koh Y, Jeon J, Cho YH, Jang MJ, Kang Y, et al. Efficient differentiation of human pluripotent stem cells into functional CD34+ progenitor cells by combined modulation of the MEK/ERK and BMP4 signaling pathways. Blood. 2010;116:5762–72.

    Article  CAS  PubMed  Google Scholar 

  87. Wanjare M, Kuo F, Gerecht S. Derivation and maturation of synthetic and contractile vascular smooth muscle cells from human pluripotent stem cells. Cardiovasc Res. 2013;97:321–30.

    Article  CAS  PubMed  Google Scholar 

  88. Cheung C, Bernardo AS, Trotter MW, Pedersen RA, Sinha S. Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nat Biotechnol. 2012;30:165–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Patsch C, Challet-Meylan L, Thoma EC, Urich E, Heckel T, O'Sullivan JF, et al. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat Cell Biol. 2015;17:994–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Menendez L, Kulik MJ, Page AT, Park SS, Lauderdale JD, Cunningham ML, et al. Directed differentiation of human pluripotent cells to neural crest stem cells. Nat Protoc. 2013;8:203–12.

    Article  CAS  PubMed  Google Scholar 

  91. Menendez L, Yatskievych TA, Antin PB, Dalton S. Wnt signaling and a Smad pathway blockade direct the differentiation of human pluripotent stem cells to multipotent neural crest cells. Proc Natl Acad Sci U S A. 2011;108:19240–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Karamariti E, Margariti A, Winkler B, Wang X, Hong X, Baban D, et al. Smooth muscle cells differentiated from reprogrammed embryonic lung fibroblasts through DKK3 signaling are potent for tissue engineering of vascular grafts. Circ Res. 2013;112:1433–43.

    Article  CAS  PubMed  Google Scholar 

  93. Lin H, Qiu X, Du Q, Li Q, Wang O, Akert L, et al. Engineered microenvironment for manufacturing human pluripotent stem cell-derived vascular smooth muscle cells. Stem Cell Rep. 2019;12:84–97.

    Article  CAS  Google Scholar 

  94. Luo J, Qin L, Zhao L, Gui L, Ellis MW, Huang Y, et al. Tissue-engineered vascular grafts with advanced mechanical strength from human iPSCs. Cell Stem Cell. 2020;26:251–61 e8.

    Article  CAS  PubMed  Google Scholar 

  95. Hibino N, Duncan DR, Nalbandian A, Yi T, Qyang Y, Shinoka T, et al. Evaluation of the use of an induced puripotent stem cell sheet for the construction of tissue-engineered vascular grafts. J Thorac Cardiovasc Surg. 2012;143:696–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xie C, Hu J, Ma H, Zhang J, Chang LJ, Chen YE, et al. Three-dimensional growth of iPS cell-derived smooth muscle cells on nanofibrous scaffolds. Biomaterials. 2011;32:4369–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang Y, Hu J, Jiao J, Liu Z, Zhou Z, Zhao C, et al. Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds. Biomaterials. 2014;35:8960–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hu J, Wang Y, Jiao J, Liu Z, Zhao C, Zhou Z, et al. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration. Biomaterials. 2015;73:51–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sundaram S, One J, Siewert J, Teodosescu S, Zhao L, Dimitrievska S, et al. Tissue-engineered vascular grafts created from human induced pluripotent stem cells. Stem Cells Transl Med. 2014;3:1535–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gui L, Dash BC, Luo J, Qin L, Zhao L, Yamamoto K, et al. Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials. 2016;102:120–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nakayama KH, Joshi PA, Lai ES, Gujar P, Joubert LM, Chen B, et al. Bilayered vascular graft derived from human induced pluripotent stem cells with biomimetic structure and function. Regen Med. 2015;10:745–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kusuma S, Shen YI, Hanjaya-Putra D, Mali P, Cheng L, Gerecht S. Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc Natl Acad Sci U S A. 2013;110:12601–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ren X, Moser PT, Gilpin SE, Okamoto T, Wu T, Tapias LF, et al. Engineering pulmonary vasculature in decellularized rat and human lungs. Nat Biotechnol. 2015;33:1097–102.

    Article  CAS  PubMed  Google Scholar 

  104. Bargehr J, Low L, Cheung C, Bernard WG, Iyer D, Bennett MR, et al. Embryological origin of human smooth muscle cells influences their ability to support endothelial network formation. Stem Cells Transl Med. 2016;5:946–59.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Granata A, Serrano F, Bernard WG, McNamara M, Low L, Sastry P, et al. An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death. Nat Genet. 2017;49:97–109.

    Article  CAS  PubMed  Google Scholar 

  106. Kinnear C, Chang WY, Khattak S, Hinek A, Thompson T, de Carvalho Rodrigues D, et al. Modeling and rescue of the vascular phenotype of Williams-Beuren syndrome in patient induced pluripotent stem cells. Stem Cells Transl Med. 2013;2:2–15.

    Article  CAS  PubMed  Google Scholar 

  107. Misra A, Sheikh AQ, Kumar A, Luo J, Zhang J, Hinton RB, et al. Integrin beta3 inhibition is a therapeutic strategy for supravalvular aortic stenosis. J Exp Med. 2016;213:451–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Olive M, Harten I, Mitchell R, Beers JK, Djabali K, Cao K, et al. Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging. Arterioscler Thromb Vasc Biol. 2010;30:2301–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J, Yang SL, et al. Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature. 2011;472:221–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Atchison L, Zhang H, Cao K, Truskey GA. A tissue engineered blood vessel model of Hutchinson-Gilford progeria syndrome using human iPSC-derived smooth muscle cells. Sci Rep. 2017;7:8168.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Losenno KL, Goodman RL, Chu MW. Bicuspid aortic valve disease and ascending aortic aneurysms: gaps in knowledge. Cardiol Res Pract. 2012;2012:145202.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Jiao J, Xiong W, Wang L, Yang J, Qiu P, Hirai H, et al. Differentiation defect in neural crest-derived smooth muscle cells in patients with aortopathy associated with bicuspid aortic valves. EBioMedicine. 2016;10:282–90.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Biel NM, Santostefano KE, DiVita BB, El Rouby N, Carrasquilla SD, Simmons C, et al. Vascular smooth muscle cells from hypertensive patient-derived induced pluripotent stem cells to advance hypertension pharmacogenomics. Stem Cells Transl Med. 2015;4:1380–90.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Eoh JH, Shen N, Burke JA, Hinderer S, Xia Z, Schenke-Layland K, et al. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells. Acta Biomater. 2017;52:49–59.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of Interest

The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biraja C. Dash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dash, B.C. (2021). Induced Pluripotent Stem Cell-Derived Vascular Smooth Muscle Cells for Vascular Regeneration. In: Navarro, T.P., Minchillo Lopes, L.L.N., Dardik, A. (eds) Stem Cell Therapy for Vascular Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-56954-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56954-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56953-2

  • Online ISBN: 978-3-030-56954-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics