Skip to main content

Types and Origin of Stem Cells

  • Chapter
  • First Online:
Stem Cell Therapy for Vascular Diseases

Abstract

The main characteristics of stem cells are related to their undifferentiated state and their ability to self-renew and to differentiate. They may be referred to as embryonic or adult stem cells according to their appearance either in the inner cell mass of the embryo or in specific tissues throughout the fetal and postnatal life. They may also be characterized according to their developmental potency as totipotent, pluripotent, multipotent, or unipotent cells. Also, they may be obtained from their natural niche (the specific microenvironment where they reside) or may be engineered ex vivo by reprogramming somatic cells, then referred to as induced pluripotent stem cells. Based on the concept that stem cells are the organizing principle for tissue formation and homeostasis, their clinical application was a matter of time. This chapter describes the types and origin of stem cells and discusses their potential for cell therapy for vascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdel-Latif A, Bolli R, Tleyjeh IM, et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med. 2007;167:989–97.

    Article  PubMed  Google Scholar 

  2. AbuSamra DB, Aleisa FA, Al-Amoodi AS, et al. Not just a marker: CD34 on human hematopoietic stem/progenitor cells dominates vascular selectin binding along with CD44. Blood Adv. 2017;(27):2799–816.

    Google Scholar 

  3. Acar M, Kocherlakota KS, Murphy MM, et al. Deep imaging of bone marrows shows non-dividing stem cells are mainly perisinusoidal. Nature. 2015;526:16–130.

    Article  CAS  Google Scholar 

  4. Adamiak M, Cheng G, Bobis-Wozowicz S, et al. Induced pluripotent stem cell (iPSC)–derived extracellular vesicles are safer and more effective for cardiac repair than iPSCs. Circ Res. 2018;122:296–309.

    Article  CAS  PubMed  Google Scholar 

  5. Adler DS, Lazarus H, Nair R, et al. Safety and efficacy of bone marrow-derived autologous CD133 stem cell therapy. Front Biosci. 2011;3:506–14.

    Google Scholar 

  6. Anderson JL, Halperin JL, Albert NM, et al. Management of patients with peripheral artery disease (compilation of 2005 and 2011 ACCF/AHA guideline recommendations): a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2013;127:1425–43.

    Article  PubMed  Google Scholar 

  7. Anthony B, Link DC. Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends Immunol. 2013;35:32–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Arai F, Hirao A, Ohmura M, et al. Tie2/ angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118:149–61.

    Article  CAS  PubMed  Google Scholar 

  9. Aronowitz JA, Lockhart RA, Hakakian CS. Mechanical versus enzymatic isolation of stromal vascular fraction cells from adipose tissue. Springerplus. 2015;4:713.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Arutyunyan I, Elchaninov A, Makarov A, et al. Umbilical cord as prospective source for mesenchymal stem cell-based therapy. Stem Cells Int. 2016;2016:ID 6901286. 17 pages

    Article  CAS  Google Scholar 

  11. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.

    Article  CAS  PubMed  Google Scholar 

  12. Ashton B, Eaglesom C, Bab I, et al. Distribution of fibroblastic colony forming cells in rabbit bone marrow and assay of their osteogenic potential by an in vivo diffusion chamber method. Calc Tissue Int. 1984;36:83–6.

    Google Scholar 

  13. Baddoo M, Hill K, Wilkinson R, et al. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem. 2003;89:1235–49.

    Article  CAS  PubMed  Google Scholar 

  14. Baghaei K, Hashemi SM, Tokhanbiglil S, et al. Isolation, differentiation, and characterization of mesenchymal stem cells from human bone marrow. Gastroenterol Hepatol Bed Bench. 2017;10:208–13.

    PubMed  PubMed Central  Google Scholar 

  15. Bara JJ, Herrmann M, Menzel U, et al. Three-dimensional culture and characterization of mononuclear cells from human bone marrow. Cytotherapy. 2015;17:458–72.

    Article  CAS  PubMed  Google Scholar 

  16. Baran J, Kowalczyk D, Ozog M, et al. Three-color flow cytometry detection of intracellular cytokines in peripheral blood mononuclear cells: comparative analysis of phorbol myristate acetate-ionomycin and phytohemagglutinin stimulation. Cell Immunol. 2001;8:303–13.

    CAS  Google Scholar 

  17. Bartunek J, Behfar A, Dolatabadi D, et al. Cardiopoietic stem cell therapy in heart failure. The C-CURE (Cardiopoietic stem cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol. 2013;61:2329–38.

    Article  PubMed  Google Scholar 

  18. Basile DP, Yoder MC. Circulating and tissue resident endothelial progenitor cells. J Cell Physiol. 2014;229:10–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Beane OS, Fonseca VC, Cooper LL, et al. Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells. PLoS One. 2014;9:e115963.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Beerens M, Aranguren XL, Hendrickx B, et al. Multipotent adult progenitor cells support lymphatic regeneration at multiple anatomical levels during wound healing and lymphedema. Sci Rep. 2018;8:3852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Behfar A, Terzic A. Derivation of a cardiopoietic population from human mesenchymal stem cells yields cardiac progeny. Nat Clin Pract Cardiovasc Med. 2006;3:S78–82.

    Article  CAS  PubMed  Google Scholar 

  22. Bhatia M, Bonnet D, Kapp U, et al. Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J Exp Med. 1997;186(4):619–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bianchi F, Maioli F, Leonardi E, et al. A new nonenzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte-like elements by mild mechanical forces from human lipoaspirates. Cell Transplant. 2012;22:2063–77.

    Article  PubMed  Google Scholar 

  24. Bianco P, Cao X, Frenette PS, et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med. 2013;19:35–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Biscetti F, Bonadia N, Nardella E, et al. The role of the stem cells therapy in the peripheral artery disease. Int J Mol Sci. 2019;20:2233.

    Article  CAS  PubMed Central  Google Scholar 

  26. Blumberg SN, Berger A, Hwang L, et al. The role of stem cells in the treatment of diabetic foot ulcer. Diabetes Res Clin Pract. 2012;96:1–9.

    Article  PubMed  Google Scholar 

  27. Bolli R, Chugh AR, D’Amario D, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (Scipio): initial results of a randomized phase 1 trial. Lancet. 2011;378:1847–57.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15:641–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Can A, Karahuseyinoglu S. Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells. 2007;25:2886–95.

    Article  PubMed  Google Scholar 

  30. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9:641–50.

    Article  CAS  PubMed  Google Scholar 

  31. Caplan AI. What’s in a name? Tissue Eng Part A. 2010;16:2415–7.

    Article  PubMed  Google Scholar 

  32. Capoccia BJ, Robson DL, Levac KD, et al. Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity. Blood. 2009;113:5340–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Castro A, León M, del Furió V, et al. Generation of a human iPSC line by mRNA reprogramming. Stem Cell Res. 2018;28:157–60.

    Article  CAS  Google Scholar 

  34. Ceafalan LC, Enciu AM, Fertig TEM, et al. Heterocellular molecular contacts in the mammalian stem cell niche. Eur J Cell Biol. 2018;97:442–61.

    Article  CAS  PubMed  Google Scholar 

  35. Chakravarty T, Makkar RR, Ascheim DD, et al. ALLogeneic heart STem cells to achieve myocardial regeneration (ALLSTAR) trial: rationale and design. Cell Transplant. 2017;26:205–14.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Champlin R. Chapter 69: Hematopietic cellular transplantation. In: Kufe DW, Pollock RR, Weichselbaum RR, Bast RC, Gansler TS, Holland JF, Frei E, editors. Holland-Frei cancer medicine. 6th ed; 2003. ISBN-10:1-55009-213-8.

    Google Scholar 

  37. Chopra H, Hung MK, Kwong DL, et al. Insights into endothelial progenitor cells: origin, classification, potentials, and prospects. Stem Cells International ID9847015. 2018. 24p.

    Google Scholar 

  38. Chu DT, Phuong TNT, Tien NLB, et al. Adipose tissue stem cells for therapy: an update on the Progress of isolation, culture, storage, and clinical application. J Clin Med. 2019;8:917.

    Article  CAS  PubMed Central  Google Scholar 

  39. Compagna R, Amato B, Massa S, et al. Cell therapy in patients with critical limb ischemia. Stem Cells Int. 2015;2015:931420.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Condé-Green A, de Amorim NF, Pitanguy I. Influence of decantation, washing and centrifugation on adipocyte and mesenchymal stem cell content of aspirated adipose tissue: a comparative study. J Plast Sreconstr Aesthet Surg. 2010;63:1375–81.

    Article  Google Scholar 

  41. Conneally E, Cashman J, Petzer A, et al. Expansion in vitro of transplantable human cord blood stem cells demonstrated using q quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic- scid/scid mice. PNAS. 1997;94:9836–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Conte MS, Bradbury AW, Kolh P, et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. Eur J Vasc Endovasc Surg. 2019;58(1S):S1–S109.e33.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cooke JP, Losordo DW. Modulating the vascular response to limb ischemia: angiogenic and cell therapies. Circ Res. 2015;116:1561–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cooper DKC, Ekser B, Tector AJ. A brief history of clinical xenotransplantation. Int J Surg. 2015;23:205–10.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Davies BM, Snelling SJB, Quek L, et al. Identifying the optimum source of mesenchymal stem cells for use in knee surgery. J Orthop Res O Publ Orthop Res Soc. 2017;35:1868–75.

    Article  Google Scholar 

  46. Davies MG. Critical limb ischemia: cell and molecular therapies for limb salvage. Methodist Debakey Cardiovasc J. 2012;8:20–7.

    Article  PubMed  PubMed Central  Google Scholar 

  47. De Francesco F, Mannucci S, Conti G, et al. A non-enzymatic method to obtain a fat tissue derivative highly enriched in adipose stem cells (ASCs) from human Lipoaspirates: preliminary results. Int J Mol Sci. 2018;19:2061.

    Article  PubMed Central  CAS  Google Scholar 

  48. Dessels LC, Alessandrini M, Pepper MS. Factors influencing the umbilical cord blood stem cell industry: an evolving treatment landscape. Stem Cells Transl Med. 2018;7:643–50.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dhar M, Neilsen N, Beatty K, et al. Equine peripheral blood-derived mesenchymal stem cells: isolation, identification, trilineage differentiation and effect of hyperbaric oxygen treatment. Equine Vet J. 2012;44:600–5.

    Article  CAS  PubMed  Google Scholar 

  50. Digirolamo CM, Stokes D, Colter D, et al. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol. 1999;107:275–81.

    Article  CAS  PubMed  Google Scholar 

  51. Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013;14:231–5.

    Article  CAS  Google Scholar 

  52. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  53. Dooley DC, Oppenlander BK, Xiao M. Analysis of primitive CD34- and CD34+ hematopoietic cells from adults: gain and loss of CD34 antigen by undifferentiated cells are closely linked to proliferative status in culture. Stem Cells. 2004;22:556–69.

    Article  PubMed  Google Scholar 

  54. Dubsky M, Jirkovska A, Bem R, et al. Both autologous bone marrow mononuclear cell and peripheral blood progenitor cell therapies similarly improve ischaemia in patients with diabetic foot in comparison with control treatment. Diabetes Metab Res Rev. 2013;29:369–76.

    Article  CAS  PubMed  Google Scholar 

  55. Dubsky M, Jirkovská A, Bem R, et al. Comparison of the effect of stem cell therapy and percutaneous transluminal angioplasty on diabetic foot disease in patients with critical limb ischemia. Cytotherapy. 2014;16:1733e–1738.

    Article  Google Scholar 

  56. Egusa H, Sonoyama W, Nishimura M, et al. Stem cells in dentistry part I: stem cell sources. J Prosthondont Res. 2012;56:151–65.

    Article  Google Scholar 

  57. Eslaminejad MB, Nadri S. Murine mesenchymal stem cell isolated and expanded in low- and high-density culture system: surface antigen expression and osteogenic culture mineralization. In Vitro Cell Dev Biol Anim. 2009;45:451–9.

    Article  CAS  PubMed  Google Scholar 

  58. Eslaminejad MB, Nikmahzar A, Taghiyar L, et al. Murine mesenchymal stem cells isolated by low density primary culture system. Develop Growth Differ. 2006;48:361–70.

    Article  CAS  Google Scholar 

  59. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.

    Article  CAS  PubMed  Google Scholar 

  60. Fang S, Wei J, Pentinmikko N, et al. Generation of functional vessels from a single ckit+ adult vascular endothelial stem cell. PLoS Biol. 2012;10:e1001407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. FDA U.S. Food and Drug Administration (FDA). Guidance for Industry. Biologics license applications for minimally manipulated unrelated allogeneic placenta/umbilical cord blood intended for hematopoietic and immunologic reconstitution in patients with disorders affecting the hematopoietic system. 2014. Available from: http://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/CellularandGeneTherapy/UCM357135.pdf.

  62. Fei X, Wu Y, Chang K, et al. Co-culture of cord blood CD34+ cells with human BM mesenchymal stromal cells enhances short-term engraftment of cord blood cells in NOD/SCID mice. Cytotherapy. 2007;9:338–47.

    Article  CAS  PubMed  Google Scholar 

  63. Figueiredo C, Blasczyk R. A future with less HLA: potential clinical applications of HLA-universal cells. Tissue Antigens. 2015;85:443–9.

    Article  CAS  PubMed  Google Scholar 

  64. Frangogiannis NG. Cell therapy for peripheral artery disease. Curr Opin Pharmacol. 2018;39:27–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Frese L, Dijkman PE, Hoerstrup SP. Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother. 2016;43:268–74.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fujisawa T, Tura-Ceide O, Hunter A, et al. Endothelial progenitor cells do not originate from the bone marrow. Circulation. 2019;14:1524–6.

    Article  CAS  Google Scholar 

  67. Gangadaran P, Rajendran RL, Lee HW, et al. Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia. J Control Release. 2017;264:112–26.

    Article  CAS  PubMed  Google Scholar 

  68. Garry DJ, Garry MG. Interspecies chimeras and the generation of humanizes organs. Circ Res. 2019;124:23–5.

    Article  CAS  PubMed  Google Scholar 

  69. Gibson T. Zoografting: a curious chapter in the history of plastic surgery. Br J Plast Surg. 1955;8:234–42.

    Article  CAS  PubMed  Google Scholar 

  70. Gimble J, Katz A, Bunnell B. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100:1249–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gupta PK, Chullikana A, Parakh R, et al. A double blind randomized placebo-controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia. J Transl Med. 2013;11:143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gupta PK, Krishna A, Chullikana A, et al. Administration of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells in critical limb ischemia due to Buerger’s disease: phase II study report suggests clinical efficacy. Stem Cells Transl Med. 2017;5:1–11.

    Google Scholar 

  73. Hassan G, Kasem I, Soukkarieh C, et al. A simple method to isolate and expand human umbilical cord derived mesenchymal stem cells: using explant method and umbilical cord blood serum. Int J Stem Cells. 2017;10:184–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hassan HT, El-Sheemy M. Adult bone-marrow stem cells and their potential in medicine. J R Soc Med. 2004;97:465–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. He QL, Wan C, Li G. Concise review: multipotent mesenchymal stromal cells in blood. Stem Cells. 2007;25:69e77.

    Article  CAS  Google Scholar 

  76. Hendijani F, Sadeghi-Aliabadi H, Haghjooy Javanmard S. Comparison of human mesenchymal stem cells isolated by explant culture method from entire umbilical cord and Wharton’s jelly matrix. Cell Tissue Bank. 2014;15:555–65.

    Article  CAS  PubMed  Google Scholar 

  77. Herrmann M, Bara JJ, Sprecher CM, et al. Pericyte plasticity-comparative investigation of the angiogenic and multilineage potential of pericytes from different human tissues. Eur Cells Mater. 2016;31:236–49.

    Article  CAS  Google Scholar 

  78. Herrmann M, Binder A, Menzel U, et al. CD34/CD133 enriched bone marrow progenitor cells promote neovascularization of tissue engineered constructs in vivo. Stem Cell Res. 2014;13:465–77.

    Article  CAS  PubMed  Google Scholar 

  79. Herrmann M, Hildebrand M, Menzel U, et al. Phenotypic characterization of bone marrow mononuclear cells and derived stromal cell populations from iliac crest, vertebral body and femoral head. Int J Mol Sci. 2019;20:piiE3454.

    Article  CAS  Google Scholar 

  80. Hirschi K, Dejana E. Resident endothelial progenitors make themselves at home. Cell Stem Cell. 2018;23:153–5.

    Article  CAS  PubMed  Google Scholar 

  81. Holm JS, Toyserkani NM, Sorensen JA. Adipose-derived stem cells for treatment of chronic ulcers: current status. Stem Cell Res Ther. 2018;9:142.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hordviewska A, Popiotek T, Horecka A. Characteristics of hematopoietic stem cells of umbilical cord blood. Cytotechnology. 2015;67:387–96.

    Article  CAS  Google Scholar 

  83. Huang P, Li S, Han M, et al. Autologous transplantation of granulocyte colony stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care. 2005;28:2155–60.

    Article  PubMed  Google Scholar 

  84. Idei N, Soga J, Hata T, et al. Autologous bone-marrow mononuclear cell implantation reduces long-term major amputation risk in patients with limb ischemia: a comparison of atherosclerotic peripheral arterial disease and Buerger disease. Circ Cardiovasc Interv. 2011;4:15–25.

    Article  PubMed  Google Scholar 

  85. Iftimia-Mander A, Hourd P, Dainty R, et al. Mesenchymal stem cell isolation from human umbilical cord tissue: understanding and minimizing variability in cell yield for process optimization. Biopreserv Biobank. 2013;11:291–8.

    Article  CAS  PubMed  Google Scholar 

  86. Ingram DA, Caplice NM, Yoder MC. Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood. 2015;106:1525–31.

    Article  CAS  Google Scholar 

  87. International Council for Commonality in Blood Banking Automation: B Rice, editors. ISBT 128 standard, standard terminology for medical products of human origin. Version 7.32. San Bernardino, CA: 2020. Available from: http://www.iccbba.org/tech-library/iccbba-documents/standard-terminology. Accessed in 28/01/2020.

  88. Jang Y, Choi J, Park N, et al. Development of immunocompatible pluripotent stem cells via CRISPR-based human leukocyte antigen engineering. Exp Mol Med. 2019;51(3)

    Google Scholar 

  89. Jialal I, Devaraj S, Singh U, et al. Decreased number and impaired functionality of endothelial progenitor cells in subjects with metabolic syndrome: implications for increased cardiovascular risk. Atherosclerosis. 2010;211:297–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Karpova D, Rettig MP, DiPersio JF. Mobilized peripheral blood: an updated perspective. F1000Res. 2019;8:2125.

    Article  CAS  Google Scholar 

  91. Kataoka K, Medina RJ, Kageyama T, et al. Participation of adult mouse bone marrow cells in reconstitution of skin. Am J Pathol. 2003;163:1227–31.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kavala AA, Turkyilmaz S. Autogenously derived regenerative cell therapy for venous leg ulcers. Arch Med Sci Atheroscler Dis. 2018;3:e156–63.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kawamura M, Miyagawa S, Fukushima S, et al. Enhanced survival of transplanted human induced pluripotent stem cell–derived cardiomyocytes by the combination of cell sheets with the pedicled omental flap technique in a porcine heart. Circulation. 2013;128:S87–94.

    Article  PubMed  Google Scholar 

  94. Kekre N, Antin JH. Hematopoietic stem cell transplantation donor sources in the 21st century: choosing the ideal donor when a perfect match does not exist. Blood. 2014;124:334–43.

    Article  CAS  PubMed  Google Scholar 

  95. Kervadec A, Bellamy V, El Harane N, et al. Cardiovascular progenitor–derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure. J Hear Lung Transpl. 2016;35:795–807.

    Article  Google Scholar 

  96. Kiel MJ, Yilmaz OH, Iwashita T, et al. SLAM family receptors distinguish hematopoietic stem and progenitor cell and reveal endothelial niches for stem cells. Cell. 2005;1217:1109–21.

    Article  CAS  Google Scholar 

  97. Kim D, Kim AM, Joh DJ, et al. Angiogenesis facilitated by autologous whole bone marrow stem cell transplantation for Buerger’s disease. Stem Cells. 2006;24:1194–200.

    Article  PubMed  Google Scholar 

  98. Kirana S, Stratmann B, Prante C, et al. Autologous stem cell therapy in the treatment of limb ischaemia induced chronic tissue ulcers of diabetic foot patients. Int J Clin Pract. 2012;66:384–93.

    Article  CAS  PubMed  Google Scholar 

  99. Koh YJ, Koh BI, Kim H, et al. Stromal vascular fraction from adipose tissue forms profound vascular network through the dynamic reassembly of blood endothelial cells. Arterioscler Thromb Vasc Biol. 2011;31:1141–50.

    Article  CAS  PubMed  Google Scholar 

  100. Konstantinow A, Arnold A, Djabali K, et al. Therapy of ulcus cruris of venous and mixed venous arterial origin with autologous, adult, native progenitor cells from subcutaneous adipose tissue: a prospective clinical pilot study. J Eur Acad Dermatol Venereol. 2017;31:2104–18.

    Article  CAS  PubMed  Google Scholar 

  101. Koobatian MT, Liang MS, Swartz DD, et al. Differential effects of culture senescence and mechanical stimulation on the proliferation and leiomyogenic differentiation of MSC from different sources: implications for engineering vascular grafts. Tissue Eng Part A. 2015;1:1364–75.

    Article  Google Scholar 

  102. Körbling M, Anderlini P. Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopietic stem cells matter? Blood. 2001;98:2900–8.

    Article  PubMed  Google Scholar 

  103. Kot M, Baj-Krzyworzek M, Szatanek R, et al. The importance of HLA in “off-the-shelf” allogeneic mesenchymal stem cells based-therapies. Int J Mol Sci. 2019;20:5680.

    Article  CAS  PubMed Central  Google Scholar 

  104. Kwon YW, Yang HM, Cho HJ. Cell therapy for myocardial infarction. Int J Stem Cells. 2010;3:8–15.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Lau S, Eicke D, Oliveira MC, et al. Low immunogenic endothelial cells maintain morphological and functional properties required for vascular tissue engineering. Tissue Eng A. 2018;24:432–47.

    Article  CAS  Google Scholar 

  106. Lee KB, Kang ES, Kim AK, et al. Stem cell therapy in patients with thromboangiitis obliterans: assessment of the long-term clinical outcome and analysis of the prognostic factors. Int J Stem Cells. 2011;4:2.

    Article  Google Scholar 

  107. Leemhuis T, Yoder MC, Grigsby S, et al. Isolation of primitive human bone marrow hematopoietic progenitor cells using Hoechst 33342 and rhodamine 123. Exp Hematol. 1996;24:1215–24.

    CAS  PubMed  Google Scholar 

  108. Li J, Ezzelarab MB, Cooper DKC. Do mesenchymal stem cells function across species barriers? Relevance for xenotransplantation. Xenotransplantation. 2012;19:273–85.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Liew A, Bhattacharya V, Shaw J, et al. Cell therapy for critical limb ischemia: a meta-analysis of randomized controlled trials. Angiology. 2016;67:444–55.

    Article  PubMed  Google Scholar 

  110. Lin TC, Lee OK. Stem cells: a primer. Chin J Physiol. 2008;51:197–207.

    PubMed  Google Scholar 

  111. Lipinski MJ, Biondi-Zoccai GG, Abbate A, et al. Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. J Am Coll Cardiol. 2007;50:1761–7.

    Article  PubMed  Google Scholar 

  112. Loike JD, Kadish A. Ethical rejections of xenotransplantation? EMBO Rep. 2018;9:e46337.

    Google Scholar 

  113. Lopes L, Setia O, Aurshina A, et al. Stem cell therapy for diabetic foot ulcers: a review of preclinical and clinical research. Stem Cell Res Ther. 2018;9:188.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lucas D. The bone marrow microenvironment for hematopoietic stem cells. In: Birbrair A, editor. Stem cell microenvironments and beyond, Advances in experimental medicine and biology, vol. 1041: Springer Nature Switzerland; 2017.

    Google Scholar 

  115. MacAskill MG, Saif J, Jansen MA, et al. Robust revascularization in models of limb ischemia using a clinically translatable human stem cell-derived endothelial cell product. Mol Ther. 2018;26:7.

    Article  CAS  Google Scholar 

  116. Madigan M, Atoui R. Therapeutic use of stem cells for myocardial infarction. Bioengineering. 2018;5:28.

    Article  PubMed Central  CAS  Google Scholar 

  117. Maldonado GEM, Alvarez CA, Rez PE, et al. Autologous stem cells for the treatment of post-mastectomy lymphedema: a pilot study. Cytotherapy. 2011;13:1249–55.

    Article  PubMed  Google Scholar 

  118. Maleki M, Ghanbarvand F, Mohammad RBME, et al. Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int J Stem Cells. 2014;7:118–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Malliaras K, Makkar RR, Smith RR, et al. Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (Cardiosphere- derived autologous stem cells to reverse ventricular dysfunction). J Am Coll Cardiol. 2007;63:110–22.

    Article  Google Scholar 

  120. Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell–derived retinal cells for macular degeneration. New Engl J Med. 2017;376:1038–46.

    Article  CAS  PubMed  Google Scholar 

  121. Martin-Rendon E, Brunskill S, Dore’e C, et al. Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev. 2008;9:CD006536.

    Google Scholar 

  122. Martin-Rufino JD, Lozano FS, Redondo AM, et al. Sequential intravenous allogeneic mesenchymal stromal cells as a potential treatment for thromboangiitis obliterans (Buerger’s disease). Stem Cell Res Ther. 2018;9:150.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Mathiyalagan P, Liang Y, Kim D, et al. Angiogenic mechanisms of human CD341 stem cell exosomes in the repair of ischemic hindlimb. Circ Res. 2017;120:1466–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Matoba S, Tatsumi T, Murohara T, et al. Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (therapeutic angiogenesis by cell transplantation [TACT] trial) in patients with chronic limb ischemia. Am Heart J. 2008;156:1010–8.

    Article  PubMed  Google Scholar 

  125. Mattapally S, Pawlik KM, Fast VG, et al. Human leukocyte antigen class I and II knockout human induced pluripotent stem cell-derived cells: universal donor for cell therapy. J Am Heart Assoc. 2018;7:e010239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. McDonald AI, Shirali AS, Aragón R, et al. Endothelial regeneration of large vessels is a biphasic process driven by local cells with distinct proliferative capacities. Cell Stem Cell. 2018;23:210–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Medina RJ, O’Neill CL, Humphreys MW, et al. Outgrowth endothelial cells: characterization and their potential for reversing ischemic retinopathy. Invest Ophthalmol Vis Sci. 2010;51:5906–13.

    Article  PubMed  Google Scholar 

  128. Menasché P, Vanneaux V, Hagège A, et al. Transplantation of human embryonic stem cell–derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J Am Coll Cardiol. 2018;71:429–38.

    Article  PubMed  Google Scholar 

  129. Messina E, De Angelis L, Frati G, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;29:911–21.

    Article  CAS  Google Scholar 

  130. Miana VV, González EAP. Adipose tissue stem cells in regenerative medicine. eCancer. 2018;12:822.

    Article  Google Scholar 

  131. Miller CL, Eaves CJ. Expansion in vitro of adult murine hematopoietic stem cells with transplantable lympho-myeloid reconstituting ability. PNAS. 1997;94:13648–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Min WK, Bae JS, Park BC, et al. Proliferation and osteoblastic differentiation of bone marrow stem cells: comparison of vertebral body and iliac crest. Eur Spine J O Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2010;19:1753–60.

    Article  Google Scholar 

  133. Mitchell JB, Mcintosh K, Zvonic S, et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell–associated markers. Stem Cells. 2006;24:376–85.

    Article  PubMed  Google Scholar 

  134. Montelatici E, Baluce B, Ragni E, et al. Defining the identity of human adipose-derived mesenchymal stem cells. Biochem Cell Biol. 2014;93:1–9.

    Google Scholar 

  135. Nigro P, Bassetti B, Cavallotti L, et al. Cell therapy for heart disease after 15 years: unmet expectations. Pharmacol Res. 2018;127:77–91.

    Article  PubMed  Google Scholar 

  136. O’Donnell EA, Ernst DN, Hingorani R. Multiparameter flow cytometry: advances in high resolution analysis. Immune Netw. 2013;13:43–54.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Okita K, Nakagawa M, Hyenjong H, et al. Generation of mouse induced pluripotent stem cells without viral vectors. Sci New York N Y. 2008;322:949–53.

    Article  CAS  Google Scholar 

  138. Perin EC, Murphy MP, March KL, et al. Evaluation of cell therapy on exercise performance and limb perfusion in peripheral artery disease: the CCTRN patients with intermittent claudication injected with ALDH bright cells (PACE) trial. Circulation. 2017;11:1417–28.

    Article  Google Scholar 

  139. Petterson J, Moore CH, Palser E, et al. Detecting primitive hematopoietic stem cells in total nucleated and mononuclear cell fractions from umbilical cord blood segments and units. J Transl Med. 2015;13:94.

    Article  CAS  Google Scholar 

  140. Pignolo RJ, Kassem M. Circulating osteogenic cells: implications for injury, repair, and regeneration. J Bone Miner Res. 2011;26:1685e93.

    Article  Google Scholar 

  141. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  PubMed  Google Scholar 

  142. Pranke P, Hendrikx J, Debnath G, et al. Immunophenotype of hematopoietic stem cells from placental/umbilical cord blood after culture placental/umbilical cord blood. Braz J Med Biol Res. 2005;38:1775–89.

    Article  CAS  PubMed  Google Scholar 

  143. Qadura M, Terenzi DC, Verma S, et al. Concise review: cell therapy for critical limb ischemia: an integrated review of preclinical and clinical studies. Stem Cells. 2018;36:161–71.

    Article  PubMed  Google Scholar 

  144. Reemtsma K, McCracken BH, Schlegel JU, et al. Renal heterotransplantation in man. Ann Surg. 1964;160:384–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Reinisch A, Hofmann NA, Obenauf AC, et al. Humanized large-scale expanded endothelial colony-forming cells function in vitro and in vivo. Blood. 2009;113:6716–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Risbud MV, Shapiro IM, Guttapalli A, et al. Osteogenic potential of adult human stem cells of the lumbar vertebral body and the iliac crest. Spine. 2006;31:83–9.

    Article  PubMed  Google Scholar 

  147. Robinson SN, Ng J, Niu T, et al. Adult and embryonic stem cells. Bone Marrow Transplant. 2006;37:359–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Rodbell M. The metabolism of isolated fat cells, IV: regulation of release of protein by lipolytic hormones and insulin. J Biol Chem. 1966b;241:3909–17.

    Article  CAS  PubMed  Google Scholar 

  149. Rodbell M, Jones AB. Metabolism of isolated fat cells, 3: the similar inhibitory action of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline. J Biol Chem. 1966;241:140–2.

    Article  CAS  PubMed  Google Scholar 

  150. Rodbell M. Metabolism of isolated fat cells, II: the similar effects of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on glucose and amino acid metabolism. J Biol Chem. 1966a;241:130–9.

    Article  CAS  PubMed  Google Scholar 

  151. Rossini A, Frati C, Lagrasta C, et al. Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. Cardiovasc Res. 2011;89:650–60.

    Article  CAS  PubMed  Google Scholar 

  152. Roura S, Pujal JM, Montón CG, et al. The role and potential of umbilical cord blood in an era of news therapies: a review. Stem Cell Res Ther. 2015;6:123.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Roux FA, Sai P, Deschamps JY. Xenotransfusions, past and present. Xenotransplantation. 2007;14:208–16.

    Article  PubMed  Google Scholar 

  154. Ruzicka K, Grskovic B, Pavlovic V, et al. Differentiation of human umbilical cord blood CD133 stem cells towards myelo-monocytic lineage. Clin Chim Acta. 2004;343:85–92.

    Article  CAS  PubMed  Google Scholar 

  155. Schächinger V, Erbs S, Elsässer A, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardical infarction. N Engl J Med. 2006;355:1210–21.

    Article  PubMed  Google Scholar 

  156. Senesi L, De Francesco F, Farinelli L, et al. Mechanical and enzymatic procedures to isolate the stromal vascular fraction from adipose tissue: preliminar results. Front Cell Dev Biol. 2019;7:88.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Sharma RK, John JR. Role of stem cells in the management of chronic wounds. Indian J Plast Surg. 2012;45:237–43.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Shi Y, Desponts C, Do JT, et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell. 2008;6:568–74.

    Article  CAS  Google Scholar 

  159. Siclari VA, Zhu J, Akiyama K, et al. Mesenchymal progenitors residing close to the bone surface are functionally distinct from those in the central bone marrow. Bone. 2013;53:575–86.

    Article  PubMed  Google Scholar 

  160. Sipp D, Robey PG, Turner L. Clear up this stem-cell mess. Nature. 2018;561:455–7.

    Article  CAS  PubMed  Google Scholar 

  161. Smith RR, Barile L, Cho HC, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;20:896–908.

    Article  CAS  Google Scholar 

  162. Soleimani M, Nadri S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc. 2009;4:102–6.

    Article  CAS  PubMed  Google Scholar 

  163. Song WK, Park KM, Kim HJ, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Rep. 2015;4:860–72.

    Article  CAS  Google Scholar 

  164. Stone RC, Stojadinovic O, Rosa AM, et al. A bioengineered living cell construct activates an acute wound healing response in venous leg ulcers. Sci Transl Med. 2017;04:371.

    Google Scholar 

  165. Strioga M, Viswanathan S, Darinskas A, et al. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 2012;21:2724–52.

    Article  CAS  PubMed  Google Scholar 

  166. Suarez LJ, Herrera C, Pan M, et al. Regenerative therapy in patients with a revascularized acute anterior myocardial infarction and depressed ventricular function. Rev Esp Cardiol. 2007;60:357–65.

    Google Scholar 

  167. Sugiyama T, Kohara H, Noda M, et al. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;256:977–88.

    Article  CAS  Google Scholar 

  168. Sullivan S, Stacey GN, Akazawa C, et al. Quality control guidelines for clinical-grade human induced pluripotent stem cell lines. Regen Med. 2018;13:859–66.

    Article  CAS  PubMed  Google Scholar 

  169. Svolacchia F, De Francesco F, Trovato L, et al. An innovative regenerative treatment of scars with dermal micrografts. J Cosmet Dermatol. 2016:1–9.

    Google Scholar 

  170. Szade K, Gulati GS, Chan CKF, et al. Where hematopoietic stem cells live: the bone marrow niche. Antioxid Redox Signal. 2018;29:191–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  172. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblasts cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  173. Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis using cell transplantation study I. therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360:427–35.

    Article  PubMed  Google Scholar 

  174. Tepper OM, Carr J, Allen RJ, et al. Decreased circulating progenitor cell number and failed mechanisms of stromal cell derived factor-1alpha mediated bone marrow mobilization impair diabetic tissue repair. Diabetes. 2010;59:1974–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  176. Tian H, Huang S, Gong F, et al. Karyotyping, immunophenotyping, and apoptosis analyses on human hematopoietic precursor cells derived from umbilical cord blood following long-term ex vivo expansion. Cancer Genet Cytogenet. 2005;157:33–6.

    Article  CAS  PubMed  Google Scholar 

  177. Todorova D, Simoncini S, Lacroix R, et al. Extracellular vesicles in angiogenesis. Circ Res. 2017;120:1658–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Tondreau T, Lagneaux L, Dejeneffe M, et al. Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection: phenotype, proliferation kinetics and differentiation potential. Cytotherapy. 2004;6:372–9.

    Article  CAS  PubMed  Google Scholar 

  179. Toyserkani NM, Christensen ML, Sheikh SP, et al. Stem cells show promising results for lymphoedema treatment – a literature review. J Plast Surg Hand Surg. 2014;49:65–71.

    Article  PubMed  Google Scholar 

  180. Toyserkani NM, Jensen CH, Tabatabaeifar S, et al. Adipose-derived regenerative cells and fat grafting for treating breast cancer-related lymphedema: lymphoscintigraphic evaluation with 1 year of follow-up. J Plast Reconstr Aesthet Surg. 2019;72:71–7.

    Article  CAS  PubMed  Google Scholar 

  181. Tremolada C. Mesenchymal stem cells and regenerative medicine: how Lipogems technology make them easy, safe and more effective to use. Mol Biol Med. 2017;2:223–6.

    Google Scholar 

  182. Tuin AJ, Domerchie PN, Schepers RH, et al. What is the current optimal fat grafting processing technique? A systematic review. J Craniomaxillofac Surg. 2016;44:45–55.

    Article  PubMed  Google Scholar 

  183. Urbich C, Heeschen C, Aicher A, et al. Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation. 2003;108:2511–6.

    Article  PubMed  Google Scholar 

  184. van Tongeren RB, Hamming JF, Fibbe WE, et al. Intramuscular or combined intramuscular/ intra-arterial administration of bone marrow mononuclear cells: a clinical trial in patients with advanced limb ischemia. J Cardiovasc Surg. 2008;49:51–8.

    Google Scholar 

  185. van Vlasselaer P, Falla N, Snoeck H, et al. Characterization and purification of osteogenic cells from murine bone marrow by two-color cell sorting using anti-Sca1 monoclonal antibody and wheat germ agglutinin. Blood. 1994;84:753–63.

    Article  PubMed  Google Scholar 

  186. Vanlandewijck M, He L, Mäe MA, et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature. 2018;14:1–34.

    Google Scholar 

  187. Vijayakumar A, Tiwari R, Kumar PV. Thromboangiitis obliterans (Buerger’s disease)-current practices. Int J Inflamm. 2013;2013:156905.

    Article  Google Scholar 

  188. Wakabayashi T, Naito H, Suehiro JI, et al. CD157 marks tissue-resident endothelial stem cells with homeostatic and regenerative properties. Cell Stem Cell. 2018;22:384–397.e6.

    Article  CAS  PubMed  Google Scholar 

  189. Walter DH, Krankenberg H, Balzer JO, et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: a randomized-start, placebo-controlled pilot trial (PROVASA). Circ Cardiovasc Interv. 2011;4:26–37.

    Article  PubMed  Google Scholar 

  190. Wang L, Gu ZY, Liu SF, et al. Single-versus double- unit umbilical cord blood transplantation for hematologic diseases: a systematic review. Transfus Med Rev. 2019;33:51–60.

    Article  PubMed  Google Scholar 

  191. Wang X, Zhang H, Nie L, et al. Myogenic differentiation and reparative activity of stromal cells derived from pericardial adipose in comparison to subcutaneous origin. Stem Cell Res Ther. 2014;5:1–11.

    Article  Google Scholar 

  192. Williams AR, Trachtenberg B, Velazquez DL, et al. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ Res. 2011;108:792–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wognum AW, Eaves AC, Thomas TE. Identification and isolation of hematopietic stem cells. Arch Med Res. 2003;34:461–75.

    Article  CAS  PubMed  Google Scholar 

  194. Woo DH, Hwang HS, Shim JH. Comparison of adult stem cells derived from multiple stem cell niches. Biotechnol Lett. 2016;16:751–9.

    Article  CAS  Google Scholar 

  195. Wu Y, Wang J, Scott PG, et al. Bone marrow-derived stem cells in wound healing: a review. Wound Repair Regen. 2007;15(Suppl. 1):S18–26.

    Article  PubMed  Google Scholar 

  196. Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112:1821–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Yoder M. Human endothelial progenitor cells. Cold Spring Harb Perspect Med. 2012;2:a006692.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Yoder M. Endothelial progenitor cell: a blood cell by many other names may serve similar functions. J Mol Med. 2013;91:285–95.

    Article  PubMed  Google Scholar 

  199. Yoder MC, Mead LE, Prater D, et al. Redefinig endothelial progenitor cells via clonal analysis and hematopoietic stem/ progenitor cell principals. Blood. 2007;109:1801–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Yoon JH, Roh EY, Shin S, et al. Comparison of explant-derived and enzymatic digestion-derived MSCs and the growth factors from Wharton’s jelly. Biomed Res Int. 2013;2013:428726.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Yoshida M, Tsuji K, Ebihara Y, et al. Thrombopoietin alone stimulates the early proliferation and survival of human erythroid, myeloid and multipotential progenitors in serum-free culture. Br J Haematol. 1997;98:254–64.

    Article  CAS  PubMed  Google Scholar 

  202. Yoshimura K, Shigeura T, Matsumoto D, et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol. 2006;208:64–76.

    Article  CAS  PubMed  Google Scholar 

  203. Zhang CC, Kaba M, Iizuka S, et al. Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation. Blood. 2008;111:3415–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Zhang CC, Lodish HF. Cytokines regulating hematopoietic stem cell function. Curr Opin Hematol. 2008;15:307–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Zhang Y, Deng H, Tang Z. Efficacy of cellular therapy for diabetic foot ulcer: a meta-analysis of randomized controlled clinical trials. Cell Transplant. 2017;26:12.

    Article  Google Scholar 

  206. Zhao L, Johnson T, Liu D. Therapeutic angiogenesis of adipose derived stem cells for ischemic diseases. Stem Cell Res Ther. 2017;8:125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009;4:381–4.

    Article  CAS  PubMed  Google Scholar 

  208. Zhou W, Freed CR. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells. 2009;27:2667–74.

    Article  CAS  PubMed  Google Scholar 

  209. Zimmerlin L, Donnenberg VS, Rubin JP, et al. Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A. 2013;83:134–40.

    Article  PubMed  CAS  Google Scholar 

  210. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

da Silva Barcelos, L., Castro, P.R., Straessler, E.T., Kränkel, N. (2021). Types and Origin of Stem Cells. In: Navarro, T.P., Minchillo Lopes, L.L.N., Dardik, A. (eds) Stem Cell Therapy for Vascular Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-56954-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56954-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56953-2

  • Online ISBN: 978-3-030-56954-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics