Skip to main content

Changing the Course of Peripheral Arterial Disease Using Adult Stem Progenitor Cells

  • Chapter
  • First Online:
Stem Cell Therapy for Vascular Diseases

Abstract

Lower extremity arterial disease affects more than 200 × 10e6 people worldwide causing Critical Limb Ischemia (CLI), also referred to as chronic limb-threatening ischemia (CLTI) a life-threatening disease and the major cause of ischemic amputation. For nonrevascularizable patients, the outlook is bleak and novel therapies are needed. This chapter discusses new approaches including gene therapy and stem/progenitor cell (SPC)-based therapies, including autologous bone marrow-derived cells (BM), MB-mononuclear cells (BM-MNC), mesenchymal stem cells (MSC), mobilized bone marrow cell (PB-MNC), allogeneic cells and ex vivo expanded or activated/differentiated cell products. A preliminary first-in-human trial of a novel treatment is presented that combines immune cell therapy and a stepwise activation and differentiation of SPC. Cells from a standard blood draw (with no pretreatment or mobilization) are transformed, within a day, into a therapeutic product (BGC101) composed of endothelial progenitor cells (EPCs), SPCs, dendritic cells (DCs), and T helper cells. BGC101 was found safe and effective in stabilizing and reversing the course of CLI. Controlled studies on a larger population are planned to evaluate this new concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABI:

Ankle-brachial Index

ACE:

Angiotensin-converting enzyme

AcLDL:

Acetylated low-density lipoprotein

ACP:

Angiogenic cell precursor

AE:

Adverse events

AFS:

Amputation-free survival

ATMP:

Advanced therapy medicinal products

AP:

Ankle pressure

BM:

Bone marrow

CFA:

Common femoral artery

CLI:

Critical Limb Ischemia

CLTI:

chronic limb-threatening ischemia

CTCAE:

Common Terminology Criteria for Adverse Events

CPK:

Creatine phosphokinase

CV:

Cardiovascular

DC:

Dendritic cell

Del-1 and DELTA 1:

Developmentally regulated endothelial locus

DSMB:

Data and Safety Monitoring Board

EC:

Endothelial cells

EnEPC:

Enriched endothelial progenitor cells

EPC:

Endothelial progenitor cells

ESC:

European Society for Cardiology

EVT:

Endovascular therapy

FGF :

Fibroblast growth factor

FIH:

First in human

GVHD:

Graft-versus-host disease

GSV:

Great saphenous vein

G-CSF:

Granulocyte colony-stimulating factor

GCP:

Good clinical practice

GMP:

Good manufacturing practice

GTP:

Good tissue practice

Hg:

Hemoglobin

HGF:

Hepatocyte growth factor

HIF:

Hypoxia inducible factor

HSPC:

Hematopoietic stem/progenitor cells

IA:

Intra-arterial

IC:

Intermittent claudication

ICH:

International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use

IL-10:

Interleukin-10

IM:

Intramuscular

IV:

Intravenous

LEAD:

Lower extremity arterial disease

LOCF:

Last observation carried forward

MedDRA:

Medical Dictionary for Regulatory Activities

MI:

Myocardial infarction

MNC:

Mononuclear cells

MSC:

Mesenchymal stem cells

NIH:

National Institutes of Health

NO:

Nitric oxide

PAD:

Peripheral artery disease

PBMC:

Peripheral blood mononuclear cell

PB-MNC:

Peripheral blood-derived mononuclear cells

PI:

Principal investigator

PTA:

Percutaneous transluminal angioplasty

PVR :

Pulse volume recording

QoL:

Quality of life

RCT:

Randomized controlled trial

RNA:

Ribonucleic acids

SAE:

Severe adverse effect

SOC :

System organ class

SPC:

Stem/progenitor cells

TASC:

Trans-Atlantic Inter-Society Consensus

TBI:

Toe-brachial index

TcPO2:

Transcutaneous oxygen pressure

TGF-β:

Transforming growth factor beta

TP:

Toe pressure

TTF:

Treatment failure

Ulex:

Plant Ulex europaeus

VAS:

Visual Analogue Scale

VascuQol:

Vascular Quality of Life

VEGF:

Vascular endothelial growth factor

WBC:

White blood cells

WIfI:

Wound, Ischemia, and foot Infection

References

  1. Aboyans V, Ricco J, Bartelink M, Björck M, Brodmann M, Cohnert T, Collet J, Czerny M, De Carlo M, Debus S, Espinola-Klein C, Kahan T, Kownator S, Mazzolai L, Ross Naylor A, Roffi M, Röther J, Sprynger M, Tendera M, Tepe G, Venermo M, Vlachopoulos C, Desormais I. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS): document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries “The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS)”. Eur Heart J. 2018;39(9):793–816.

    Google Scholar 

  2. Abualhin M, Sonetto A, Faggioli G, Mirelli M, Freyrie A, Gallitto E, Spath P, Stella A, Gargiulo M. Outcomes of duplex-guided paramalleolar and inframalleolar bypass in patients with critical limb ischemia. Ann Vasc Surg. 2018;53:154–64.

    PubMed  Google Scholar 

  3. Allie D, Hebert C, Lirtzman M, Wyatt C, Keller V, Khan M, Khan M, Fail P, Vivekananthan K, Mitran E, Allie S, Chaisson G, Stagg S, Allie A, McElderry M, Walker C. Critical limb ischemia: a global epidemic. A critical analysis of current treatment unmasks the clinical and economic costs of CLI. EuroIntervention. 2005;1(1):75–84.

    PubMed  Google Scholar 

  4. Allie D, Hebert C, Ingraldi A, Patlola R, Walker C. 24-carat gold, 14-carat gold, or platinum standards in the treatment of critical limb ischemia: bypass surgery or endovascular intervention? J Endovasc Ther. 2009;16(1):134–46.

    Google Scholar 

  5. Alonso A, Garcia L. The costs of critical limb ischemia. Endovascular Today. 2011:32–6.

    Google Scholar 

  6. Amann B, Luedemann C, Ratei R, Schmidt-Lucke JA. Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplant. 2009;18(3):371–80.

    PubMed  Google Scholar 

  7. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.

    CAS  PubMed  Google Scholar 

  8. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.

    CAS  PubMed  Google Scholar 

  9. Bartel R, Booth E, Cramer C, Ledford K, Watling S, Zeigler F. From bench to bedside: review of gene and cell-based therapies and the slow advancement into phase 3 clinical trials, with a focus on Aastrom’s Ixmyelocel-T. Stem Cell Rev Rep. 2013;9:373–83.

    CAS  PubMed  Google Scholar 

  10. Baser O, Verpillat P, Gabriel S, Wang L. Prevalence, incidence, and outcomes of critical limb ischemia in the US Medicare population. Vasc Dis Manag. 2013;10(2):E26–36.

    Google Scholar 

  11. Behfar A, Crespo-Diaz R, Nelson TJ, Terzic A, Gersh BJ. Stem cells: clinical trials results the end of the beginning or the beginning of the end? Cardiovasc Hematol Disord Drug Targets. 2010;10(3):186–201.

    CAS  PubMed  Google Scholar 

  12. Benoit E, O'Donnell TF, Patel AN. Safety and efficacy of autologous cell therapy in critical limb ischemia: a systematic review. Cell Transplant. 2013;22(3):545–62.

    PubMed  Google Scholar 

  13. Benoit E, O'Donnell TF, Iafrati E, Asher DF, Bandyk J, Hallett W, Lumsden AB, Pearl GJ, Roddy SP, Vijayaraghavan K, Patel AN. The role of amputation as an outcome measure in cellular therapy for critical limb ischemia: implications for clinical trial design. J Transl Med. 2011;9:165.

    PubMed  PubMed Central  Google Scholar 

  14. Berezin AE, Kremzer AA, Martovitskaya YV, Berezina TA, Gromenko EA. Pattern of endothelial progenitor cells and apoptotic endothelial cell-derived microparticles in chronic heart failure patients with preserved and reduced left ventricular ejection fraction. EBioMedicine. 2016;4:86–94. https://doi.org/10.1016/j.ebiom.2016.01.018

    PubMed  PubMed Central  Google Scholar 

  15. Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. Efficient targeting of protein antigen to the dendritic cell receptor dec-205 in the steady state leads to antigen presentation on major histocompatibility complex class i products and peripheral cd8+ t cell tolerance. J Exp Med. 2002;196:1627–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Brassard DL, Grace MJ, Bordens RW. Interferon-alpha as an immunotherapeutic protein. J Leukoc Biol. 2002;71:565–81.

    CAS  PubMed  Google Scholar 

  17. Canellos GP. CHOP may have been part of the beginning but certainly not the end: issues in risk-related therapy of large-cell lymphoma. J Clin Oncol. 1997;15(5):1713–6.

    CAS  PubMed  Google Scholar 

  18. Caux C, Burdin N, Galibert L, Hermann P, Renard N, Servet-Delprat C, Banchereau J. Functional cd40 on b lymphocytes and dendritic cells. Res Immunol. 1994;145:235–9.

    CAS  PubMed  Google Scholar 

  19. Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G. Ligation of cd40 on dendritic cells triggers production of high levels of interleukin-12 and enhances t cell stimulatory capacity: T-t help via apc activation. J Exp Med. 1996;184:747–52.

    CAS  PubMed  Google Scholar 

  20. Cheng P, Nefedova Y, Corzo CA, Gabrilovich DI. Regulation of dendritic-cell differentiation by bone marrow stroma via different notch ligands. Blood. 2007;109:507–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Conte MS, Bradbury AW, Kolh P, White JV, Dick F, Fitridge R, Mills JL, Ricco JB, Suresh KR, Murad MH, GVG Writing Group, Aboyans V, Aksoy M, Alexandrescu VA, Armstrong D, Azuma N, Belch J, Bergoeing M, Bjorck M, Chakfé N, Cheng S, Dawson J, Debus ES, Dueck A, Duval S, Eckstein HH, Ferraresi R, Gambhir R, Gargiulo M, Geraghty P, Goode S, Gray B, Guo W, Gupta PC, Hinchliffe R, Jetty P, Komori K, Lavery L, Liang W, Lookstein R, Menard M, Misra S, Miyata T, Moneta G, JAM P, Munoz A, Paolini JE, Patel M, Pomposelli F, Powell R, Robless P, Rogers L, Schanzer A, Schneider P, Taylor S, Vega De Ceniga M, Veller M, Vermassen F, Wang J, Wang S. Global vascular guidelines on the management of chronic limb-threatening ischemia. J Vasc Surg. 2019;69:3S–125S.

    PubMed  Google Scholar 

  22. CTCAE (2016). https://www.uptodate.com/contents/common-terminology-criteria-for-adverse​-events

  23. Dohmen A, Eder S, Euringer W, Zeller T, Beyersdorf F. Chronic critical limb ischemia. Dtsch Arztebl Int. 2012;109(6):95–101.

    PubMed  PubMed Central  Google Scholar 

  24. Dong Z, Chen B, Fu W, Wang Y, Guo D, Wei Z, Xu X, Mendelsohn FO. Transplantation of purified CD34+ cells in the treatment of critical limb ischemia. J Vasc Surg. 2013;58(2):404–411.e403.

    PubMed  Google Scholar 

  25. Dormandy JA, Rutherford RB. Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlantic Inter-Society Consensus (TASC). J Vasc Surg. 2000;31:1–296.

    Google Scholar 

  26. Dubois B, Massacrier C, Vanbervliet B, Fayette J, Briere F, Banchereau J, Caux C. Critical role of il-12 in dendritic cell-induced differentiation of naive b lymphocytes. J Immunol. 1998;161:2223–31.

    CAS  PubMed  Google Scholar 

  27. Dubsky M, Jirkovska A, Bem R, Fejfarova V, Pagacova L, Sixta B, Varga M, Langkramer S, Sykova E, Jude EB. Both autologous bone marrow mononuclear cell and peripheral blood progenitor cell therapies similarly improve ischaemia in patients with diabetic foot in comparison with control treatment. Diabetes Metab Res Rev. 2013;29(5):369–76.

    CAS  PubMed  Google Scholar 

  28. Fadini G, Agostini PC, Avogaro A. Autologous stem cell therapy for peripheral arterial disease meta-analysis and systematic review of the literature. Atherosclerosis. 2010;209(1):10–7.

    CAS  PubMed  Google Scholar 

  29. Fadini GP, Schiavon M, Cantini M, Baesso I, Facco M, Miorin M, et al. Circulating progenitor cells are reduced in patients with severe lung disease. Stem Cells. 2006;24(7):1806–13. https://doi.org/10.1634/stemcells.2005-0440

    PubMed  Google Scholar 

  30. Fernandez Pujol B, Lucibello FC, Zuzarte M, Lutjens P, Muller R, Havemann K. Dendritic cells derived from peripheral monocytes express endothelial markers and in the presence of angiogenic growth factors differentiate into endothelial-like cells. Eur J Cell Biol. 2001;80:99–110.

    CAS  PubMed  Google Scholar 

  31. Fontaine R, Kim M, Kieny R. Surgical treatment of periph- eral circulation disorders. Helv Chir Acta. 1954;21:499–533.

    CAS  PubMed  Google Scholar 

  32. Fujita R, Crist C. Translational control of the myogenic program in developing, regenerating, and diseased skeletal muscle. Curr Top Dev Biol. 2018;126:67–98.

    PubMed  Google Scholar 

  33. Fuh E, Brinton TJ. Bone marrow stem cells for the treatment of ischemic heart disease: a clinical trial review. J Cardiovasc Transl Res. 2009;2(2):202–18. https://doi.org/10.1007/s12265-009-9095-8.

    Google Scholar 

  34. Gottrup F, Holstein P, Jørgensen B, Lohmann M, Karlsmar T. A new concept of a multidisciplinary wound healing center and a national expert function of wound healing. Arch Surg. 2001;136(7):765–72.

    CAS  PubMed  Google Scholar 

  35. Gratwohl A. Thomas' hematopoietic cell transplantation. Eur J Haematol. 2010;84(1):95.

    PubMed  Google Scholar 

  36. Gupta PK, Chullikana A, Parakh R, Desai S, Das A, Gottipamula S, Krishnamurthy S, Anthony N, Pherwani A, Majumdar AS. A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia. J Transl Med. 2013;11:143.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hardman R, Jazaeri O, Yi J, Smith M, Gupta R. Overview of classification systems in peripheral artery disease. Semin Interv Radiol. 2014;31(4):378–88.

    Google Scholar 

  38. Hicks CW, Canner JK, Mathioudakis N, Lippincott C, Sherman RL, Abularrage CJ. Incidence and risk factors associated with ulcer recurrence among patients with diabetic foot ulcers treated in a multidisciplinary setting. J Surg Res. 2019;246:243–50.

    PubMed  Google Scholar 

  39. Hicks C, Canner JK, Mathioudakis N, Lippincott C. Incidence and risk factors associated with ulcer recurrence among patients with diabetic foot ulcers treated in a multidisciplinary. Setting J Surg Res. 2020;246:243–50.

    CAS  PubMed  Google Scholar 

  40. Huang P, Li S, Han M, Xiao Z, Yang R, Han ZC. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care. 2005;28(9):2155–60.

    PubMed  Google Scholar 

  41. Huang P, Yang XF, Li SZ, Wen JC, Zhang Y, Han ZC. Randomised comparison of G-CSF-mobilized peripheral blood mononuclear cells versus bone marrow-mononuclear cells for the treatment of patients with lower limb arteriosclerosis obliterans. Thromb Haemost. 2007;98(6):1335–42.

    CAS  PubMed  Google Scholar 

  42. Jensen S, Vatten LJ, Myhre HO. The prevalence of chronic critical lower limb ischaemia in a population of 20,000 subjects 40–69 years of age. Vasc Endovasc Surg. 2006;32:60–5.

    CAS  Google Scholar 

  43. Kawamura A, Horie T, Tsuda I, Ikeda A, Egawa H, Imamura E, Iida J, Sakata H, Tamaki T, Kukita K, Meguro J, Yonekawa M, Kasai M. Prevention of limb amputation in patients with limbs ulcers by autologous peripheral blood mononuclear cell implantation. Ther Apher Dial. 2005;9(1):59–63.

    PubMed  Google Scholar 

  44. Kawamura A, Horie T, Tsuda I, Abe Y, Yamada M, Egawa H, Iida J, Sakata H, Onodera K, Tamaki T, Furui H, Kukita K, Meguro J, Yonekawa M, Tanaka S. Clinical study of therapeutic angiogenesis by autologous peripheral blood stem cell (PBSC) transplantation in 92 patients with critically ischemic limbs. J Artif Organs. 2006;9(4):226–33.

    PubMed  Google Scholar 

  45. Kim SJ, Kim N, Kim EH, Roh YH, Song J, Park KH, Choi YS. Use of regional anesthesia for lower extremity amputation may reduce the need for perioperative vasopressors: a propensity score-matched observational study. Ther Clin Risk Manag. 2019;15:1163–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kitrou P, Katsanos K, Karnabatidis D, Reppas L, Brountzos E, Spiliopoulos S. Current evidence and future perspectives on anti-platelet and statin pharmacotherapy for patients with symptomatic peripheral arterial disease. Curr Vasc Pharmacol. 2017;15(5):430–45.

    CAS  PubMed  Google Scholar 

  47. Klepanec A, Mistrik M, Altaner C, Valachovicova M, Olejarova I, Slysko R, Balazs T, Urlandova T, Hladikova D, Liska B, Tomka J, Vulev I, Madaric J. No difference in intra-arterial and intramuscular delivery of autologous bone marrow cells in patients with advanced critical limb ischemia. Cell Transplant. 2012;21(9):1909–18.

    PubMed  Google Scholar 

  48. Krishna SM, Moxon J, Golledge J. A review of the pathophysiology and potential biomarkers for peripheral artery disease. Int J Mol Sci. 2015;16:11294–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lawall H, Bramlage P, Amann B. Treatment of peripheral arterial disease using stem and progenitor cell therapy. J Vasc Surg. 2011;53(2):445–53.

    PubMed  Google Scholar 

  50. Li M, Zhou H, Jin X, Wang M, Zhang S, Xu L. Autologous bone marrow mononuclear cells transplant in patients with critical leg ischemia: preliminary clinical results. Exp Clin Transplant. 2013;(5):435–9. https://doi.org/10.6002/ect.2012.0129

  51. Losordo DW, Kibbe MR, Mendelsohn F, Marston W, Driver VR, Sharafuddin M, Teodorescu V, Wiechmann BN, Thompson C, Kraiss L, Carman T, Dohad S, Huang P, Junge CE, Story K, Weistroffer T, Thorne TM, Millay M, Runyon JP, Schainfeld R. A randomized, controlled pilot study of autologous CD34+ cell therapy for critical limb ischemia. Circ Cardiovasc Interv. 2012;5(6):821–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, Xu J, Wu Q, Zhang Z, Xie B, Chen S. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract. 2011;92(1):26–36.

    PubMed  Google Scholar 

  53. Lumsden A, Davies M, Peden E. Medical and endovascular management of critical limb ischemia. J Endovasc Ther. 2009;16(2):II31–62.

    PubMed  Google Scholar 

  54. Mahnke K, Schmitt E, Bonifaz L, Enk AH, Jonuleit H. Immature, but not inactive: the tolerogenic function of immature dendritic cells. Immunol Cell Biol. 2002;80:477–83.

    PubMed  Google Scholar 

  55. McDermott MM, Guralnik JM, Criqui MH, Liu K, Kibbe MR, Ferrucci L. Six-minute walk is a better outcome measure than treadmill walking tests in therapeutic trials of patients with peripheral artery disease. Circulation. 2014;130(1):61–8.

    PubMed  PubMed Central  Google Scholar 

  56. Mills J, Conte M, Armstrong D, Pomposelli F, Schanzer A, Sidawy A, Andros G. The Society for Vascular Surgery Lower Extremity Threatened Limb Classification System: risk stratification based on Wound, Ischemia, and foot Infection (WIfI). Vasc Surg. 2014;59:220–34.

    Google Scholar 

  57. Miyamoto M, Yasutake M, Takano H, Takagi H, Takagi G, Mizuno H, Kumita S, Takano T. Therapeutic angiogenesis by autologous bone marrow cell implantation for refractory chronic peripheral arterial disease using assessment of neovascularization by 99mTc-tetrofosmin (TF) perfusion scintigraphy. Cell Transplant. 2004;13(4):429–37.

    PubMed  Google Scholar 

  58. Montoya M, Edwards MJ, Reid DM, Borrow P. Rapid activation of spleen dendritic cell subsets following lymphocytic choriomeningitis virus infection of mice: analysis of the involvement of type 1 ifn. J Immunol. 2005;174:1851–61.

    CAS  PubMed  Google Scholar 

  59. Morgan MB, Crayford T, Murrin B, Fraser SC. Developing the vascular quality of life questionnaire: a new disease-specific quality of life measure for use in lower limb ischemia. J Vasc Surg. 2001;33(4):679–87.

    CAS  PubMed  Google Scholar 

  60. Mutirangura P, Ruangsetakit C, Wongwanit C, Chinsakchai K, Porat Y, Belleli A, Czeiger D. Enhancing limb salvage by non-mobilized peripheral blood Angiogenic cell precursors therapy in patients with critical limb ischemia. J Med Assoc Thail. 2009;92(3):320–7.

    Google Scholar 

  61. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, Rutherford RB. Inter-society consensus for the management of peripheral arterial disease. Int Angiol. 2007;26(2):81–157.

    CAS  PubMed  Google Scholar 

  62. Olinic DM, Spinu M, Olinic M, Homorodean C, Tataru DA, Liew A, Schernthaner GH, Stanek A, Fowkes G, Catalano M. Epidemiology of peripheral artery disease in Europe: VAS educational paper. Int Angiol. 2018;37(4):327–34. https://doi.org/10.23736/S0392-9590.18.03996-2.

    Article  PubMed  Google Scholar 

  63. Perl L, Weissler A, Mekori YA, Mor A. Cellular therapy in 2010: focus on autoimmune and cardiac diseases. Isr Med Assoc J. 2010;12(2):110–5.

    PubMed  Google Scholar 

  64. Perera S, Mody SH, Woodman RC, Studenski SA. Meaningful change and responsiveness in common physical performance measures in older adults. J Am Geriatr Soc. 2006;54:743–9.

    PubMed  Google Scholar 

  65. Procházka V, Gumulec J, Jalůvka F, Šalounová D, Jonszta T, Czerný D, Krajča J, Urbanec R, Klement P, Martinek J, Klement GL. Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplant. 2010;19(11):1413–24.

    PubMed  PubMed Central  Google Scholar 

  66. Powell R, Comerota A, Berceli S, Guzman R, Henry T, Tzeng E, Velazquez O, Marston W, Bartel R, Longcore A, Stern T, Watling S. Interim analysis results from the RESTORE-CLI, a randomized, double-blind multicenter phase II trial comparing expanded autologous bone marrow-derived tissue repair cells and placebo in patients with critical limb ischemia. J Vasc Surg. 2011;54(4):1032–41.

    PubMed  Google Scholar 

  67. Porat Y, Assa-Kunik E, Belkin M, Krakovsky M, Lamensdorf I, Duvdevani R, Sivak G, Niven M, Bulvik S. A novel potential therapy for vascular diseases: blood-derived stem/progenitor cells specifically activated by dendritic cells. Diabetes Metab Res Rev. 2014;30(7):623–34.

    CAS  PubMed  Google Scholar 

  68. Porat Y, Abraham E, Karnieli O, Nahum S, Woda J, Zylberberg C. Critical elements in the development of cell therapy potency assays for ischemic conditions. Cytotherapy. 2015;17(7):817–31.

    PubMed  Google Scholar 

  69. Powell RJ, Simons M, Mendelsohn FO, Daniel G, Henry TD, Koga M, et al. Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation. 2008;118(1):58–65. https://doi.org/10.1161/CIRCULATIONAHA.107.727347

    CAS  PubMed  Google Scholar 

  70. Raval AN, Schmuck EG, Tefera G, Leitzke C, Ark CV, Hei D, Centanni JM, de Silva R, Koch J, Chappell RG, Hematti P. Bilateral administration of autologous CD133+ cells in ambulatory patients with refractory critical limb ischemia: lessons learned from a pilot randomized, double-blind, placebo-controlled trial. Cytotherapy. 2014;16(12):1720–32. https://doi.org/10.1016/j.jcyt.2014.07.011

    PubMed  PubMed Central  Google Scholar 

  71. Raval AD, Vyas A. Trends in healthcare expenditures among individuals with arthritis in the United States from 2008 to 2014. J Rheumatol. 2018;45(5):705–16.

    PubMed  Google Scholar 

  72. Rutherford R, Baker D, Ernst C, Johnston W, Porter J, Jones S, Darrell N. Recommended standards for reports dealing with lower extremity ischemia: revised version. J Vasc Surg. 1997;26(3):517–38.

    CAS  PubMed  Google Scholar 

  73. Riboldi E, Musso T, Moroni E, Urbinati C, Bernasconi S, Rusnati M, Adorini L, Presta M, Sozzani S. Cutting edge: proangiogenic properties of alternatively activated dendritic cells. J Immunol. 2005;175(5):2788–92.

    CAS  PubMed  Google Scholar 

  74. Rigato M, Monami M, Fadini GP. Autologous cell therapy for peripheral arterial disease: systematic review and meta-analysis of randomized, nonrandomized, and noncontrolled studies. Circ Res. 2017;120(8):1326–40.

    CAS  PubMed  Google Scholar 

  75. Rivollier A, Perrin-Cocon L, Luche S, Diemer H, Strub JM, Hanau D, van Dorsselaer A, Lotteau V, Rabourdin-Combe C, Rabilloud T, Servet-Delprat C. High expression of antioxidant proteins in dendritic cells: possible implications in atherosclerosis. Mol Cell Proteomics. 2006;5:726–36.

    CAS  PubMed  Google Scholar 

  76. Schanzer A, Conte MS. Critical limb ischemia. Curr Treat Options Cardiovasc Med. 2010;12(3):214–29.

    PubMed  PubMed Central  Google Scholar 

  77. Smith RB, Walker HK, Hall WD, Hurst JW, editors. Clinical methods: the history, physical, and laboratory examinations. 3rd ed. Boston: Butterworths; 1990. Chapter 13. PMID: 21250079.

    Google Scholar 

  78. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 1973;137:1142–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Steinman RM. Some interfaces of dendritic cell biology. APMIS. 2003;111:675–97.

    CAS  PubMed  Google Scholar 

  80. Sozzani S, Rusnati M, Riboldi E, Mitola S, Presta M. Dendritic cell-endothelial cell cross-talk in angiogenesis. Trends Immunol. 2007;28:385–92.

    CAS  PubMed  Google Scholar 

  81. Szabo GV, Kovesd Z, Cserepes J, Daroczy J, Belkin M, Acsady G. Peripheral blood-derived autologous stem cell therapy for the treatment of patients with late-stage peripheral artery disease-results of the short- and long-term follow-up. Cytotherapy. 2013;15(10):1245–52.

    PubMed  Google Scholar 

  82. Tang H, Guo Z, Zhang M, Wang J, Chen G, Cao X. Endothelial stroma programs hematopoietic stem cells to differentiate into regulatory dendritic cells through il-10. Blood. 2006;108:1189–97.

    CAS  PubMed  Google Scholar 

  83. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360(9331):427–35.

    PubMed  Google Scholar 

  84. Teraa M, Sprengers RW, Schutgens RE, Slaper-Cortenbach IC, van der Graaf Y, Algra A, van der Tweel I, Doevendans PA, Mali WP, Moll FL, Verhaar MC. Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: the randomized, double-blind, placebo-controlled Rejuvenating Endothelial Progenitor Cells via Transcutaneous Intra-arterial Supplementation (JUVENTAS) trial. Circulation. 2015;131(10):851–60.

    CAS  PubMed  Google Scholar 

  85. Teraa M, Conte M, Moll F, Verhaar M. Critical limb ischemia: current trends and future directions. J Am Heart Assoc. 2016;5(2):2938.

    Google Scholar 

  86. Tongers J, Roncalli JG And Losordo DW. Therapeutic angiogenesis for critical limb ischemia: microvascular therapies coming of age. Circulation 2008;118(1):9–16.

    PubMed  Google Scholar 

  87. Trinchieri G, Pflanz S, Kastelein RA. The il-12 family of heterodimeric cytokines: new players in the regulation of t cell responses. Immunity. 2003;19:641–4.

    CAS  PubMed  Google Scholar 

  88. Veith FJ, Gupta SK, Wengerter KR, Samson RH, Scher LA, Fell SC, Weiss P, Janko G, Flores SW, Rifkin H, Bernstein G, Haimovici H, Gliedman ML, Sprayregen S. Progress in limb salvage by reconstructive arterial surgery combined with new or improved adjunctive procedures. Ann Surg. 1981;194(4):386–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Veith FJ, Gupta SK, Wengerter KR, Goldsmith J, Rivers SP, Bakal CW, Dietzek AM, Cynamon J, Sprayregen S, Gliedman M. Effects of metoprolol on rest and exercise cardiac function and plasma catecholamines in chronic congestive heart failure secondary to ischemic or idiopathic cardiomyopathy. Am J Cardiol. 1990;66(10):843–8.

    PubMed  Google Scholar 

  90. Walter DH, Krankenberg H, Balzer JO, Kalka C, Baumgartner I, et al. Intraarterial Administration of Bone Marrow Mononuclear Cells in patients with critical limb ischemia: a randomized-start, placebo-controlled pilot trial (PROVASA). Circ Cardiovasc Interv. 2011;4(1):26–37. https://doi.org/10.1161/CIRCINTERVENTIONS.110.958348

    PubMed  Google Scholar 

  91. Wang N, Yang BH, Wang G, Gao Y, Cao X, Zhang XF, Yan CC, Lian XT, Liu BH, Ju S. A meta-analysis of the relationship between foot local characteristics and major lower extremity amputation in diabetic foot patients. J Cell Biochem. 2019;120(6):9091–6.

    CAS  PubMed  Google Scholar 

  92. Yu Z, Witmanb N, Wang W, Li D, Yan B, Deng M, Wang X, Wang H, Zhou G, Liu W, Sahara M, Cao Y, Fritsche-Danielsonf R, Zhanga W, Fud W, Chienb K. Cell-mediated delivery of VEGF modified mRNA enhances blood vessel regeneration and ameliorates murine critical limb ischemia. J Control Release. 2019;310:103–14.

    CAS  PubMed  Google Scholar 

  93. Zhang Y, Zhang C. Role of dendritic cells in cardiovascular diseases. World J Cardiol. 2010;2:357–64.

    PubMed  PubMed Central  Google Scholar 

  94. Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil. 2008;89(3):422–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yael Porat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niven, M. et al. (2021). Changing the Course of Peripheral Arterial Disease Using Adult Stem Progenitor Cells. In: Navarro, T.P., Minchillo Lopes, L.L.N., Dardik, A. (eds) Stem Cell Therapy for Vascular Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-56954-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56954-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-56953-2

  • Online ISBN: 978-3-030-56954-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics