Skip to main content

Assessing Forest Health using Geographical Information System Based Analytical Hierarchy Process: Evidences from Southern West Bengal, India

  • Chapter
  • First Online:
Spatial Modeling in Forest Resources Management

Part of the book series: Environmental Science and Engineering ((ESE))

Abstract

Vegetation plays an important role in sustaining the ecological biota and maintaining the equilibrium of environment. Thus, assessing vegetation status includes analyzing ecological dynamism, enough soil nutrients and vegetation health. Nearly 24% area of the India is under forest providing a range of resources to local communities. Bankura district has substantial forest cover comprising three divisions i.e., north Bankura division, south Bankura division and Panchet division. Nearly 1463.56 km2 territorial extent of the district comes under forest jurisdiction constituting 21.27% of the total geographical area of the district. Per capita availability of forest in this district is 0.046 ha which is lower than the other districts of south western districts of West Bengal. Therefore, it is essential to analyze the health of vegetation in this region. Present study aims to analyze the forest health using different indices namely Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Greenness Index (GI), Shadow Index (SI), Normalized Difference Bareness Index (NDBaI), Normalized Difference Built-up Index (NDBI) Perpendicular Vegetation Index (PVI), and Normalized Difference Moisture Index (NDMI) during 1990 and 2019 using Landsat 5 TM (1990) and Landsat 8 data (2019) under the model of Analytical Hierarchy Process (AHP). Results revealed that forest health was largely affected during the study period due to land transformation and disturbances created by anthropogenic activities. Findings of the study based on this 29-year spatio-temporal vegetation dynamics will ameliorate the local stake holders for managing and maintaining the health of vegetation in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acharya TD, Subedi A, Lee DH (2018) Evaluation of water indices for surface water extraction in a Landsat 8 scene of Nepal. Sensors 18(8):2580

    Google Scholar 

  • Anderson GL, Hanson JD, Haas RH (1993) Evaluating Landsat Thematic Mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands. Remote Sens Environ 45(2):165–175

    Google Scholar 

  • Andersen HE, McGaughey RJ, Reutebuch SE (2005) Estimating forest canopy fuel parameters using LIDAR data. Remote Sens Environ 94(4):441–449

    Google Scholar 

  • Avtar R, Herath S, Saito O, Gera W, Singh G, Mishra B et al (2014) Application of remote sensing techniques toward the role of traditional water bodies with respect to vegetation conditions. Environ Dev Sustain 16(5):995–1011

    Google Scholar 

  • Bajwa SG, Gowda PH, Howell TA, Leh M (2008) Comparing artificial neural network with least square regression techniques for LAI retrieval from remote sensing data. Pecora. Retrieved from https://www.researchgate.net/profile/Prasanna_Gowda2/publication/256908657_Comparing_artificial_neural_network_and_leastsquare_regressiontechniquesfor_LAI_retrieval_from_remote_sensing_data/links/54cbf6b80cf29ca810f489a8.pdf. Accessed 18 Jan 2019

  • Bankura District Forest Department (2018) Govt. of West Bengal. https://bankuraforest.in/publication/. Accessed 18 Jan 2020.

  • Bannari A, Morin D, Bonn F, Huete AR (1995) A review of vegetation indices. Remote Sens Rev 13(1–2):95–120

    Google Scholar 

  • Baret F, Guyot G (1991) Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens Environ 35(2–3):161–173. https://doi.org/10.1016/0034-4257(91)90009-U

    Article  Google Scholar 

  • Biswas PK (1993) Forestry-based sustainable development: The social dimensions. Indian J Public Adm XXXIX(3)

    Google Scholar 

  • Blanco LJ, Aguilera MO, Paruelo JM, Biurrun FN (2008) Grazing effect on NDVI across an aridity gradient in Argentina. J Arid Environ 72(5):764–776

    Google Scholar 

  • Business Standard (2019) As India hosts desertification meet, 30% of its land is already degraded. https://www.business-standard.com/article/current-affairs/as-india-hosts-desertification-meet-30-of-its-land-is-already-degraded-119090200088_1.html. Accessed on 22 March 2020

  • Cammarano D, Fitzgerald GJ, Casa R, Basso B (2014) Assessing the robustness of vegetation indices to estimate wheat N in Mediterranean environments. Remote Sens 6(4):2827–2844

    Google Scholar 

  • Chakrabortty R, Pal SC, Malik S, Das B (2018) Modeling and mapping of groundwater potentiality zones using AHP and GIS technique: a case study of Raniganj Block, Paschim Bardhaman, West Bengal. Model Earth Syst Environ 4:1–26

    Google Scholar 

  • Chen PY, Fedosejevs G, Tiscareno-Lopez M, Arnold JG (2006) Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI composite data using agricultural measurements: an example at corn fields in western Mexico. Environ Monit Assess 119(1–3):69–82

    Google Scholar 

  • Chitalea VS, Shresthaa HL, Agrawala NK, Choudhurya D, Gilania H, Dhonjua HK, Murthya MSR (2014). Forest climate change Vulnerability and Adaptation Assessment in Himalayas. Int Arch Photogramm Remote Sens Spat Inf Sci 8

    Google Scholar 

  • Ciesla WM (2000) Remote sensing in forest health protection (No. 3). US Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team

    Google Scholar 

  • Cohen WB, Maiersperger TK, Gower ST, Turner DP (2003) An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote Sens Environ 84(4):561–571

    Google Scholar 

  • Contreras F, Hanaki K, Aramaki T, Connors S (2008) Application of analytical hierarchy process to analyze stakeholders preferences for municipal solid waste management plans, Boston, USA. Resour Conserv Recycl 52(7):979–991

    Google Scholar 

  • Crist EP, Kauth R J (1986b) The Tasseled Cap de-mystified. (transformations of MSS and TM data)

    Google Scholar 

  • Crist EP, Laurin R, Cicone RC (1986a) Vegetation and soils information contained in transformed Thematic Mapper data. In Proceedings of IGARSS’86 symposium, pp 1465–1470. European Space Agency Publications Division, Parisa

    Google Scholar 

  • Cyr L (1994) Apport des indices de vegetation pourl’evaluation de la couverture du sol envued’unemodelisationspatiale de l’erosion

    Google Scholar 

  • Das B, Pal SC, Malik S, Chakrabortty R (2018) Modeling groundwater potential zones of Puruliya district, West Bengal, India using remote sensing and GIS techniques. Geol Ecol Landscapes 3(3):1–15

    Google Scholar 

  • Das K, Paul PK (2015) Soil moisture retrieval model by using RISAT-1, C-band data in tropical dry and sub-humid zone of Bankura district of India. Egypt J Remote Sens Space Sci 18(2):297–310

    Google Scholar 

  • Dash JP, Watt MS, Pearse GD, Heaphy M, Dungey HS (2017) Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS J Photogramm Remote Sens 131:1–14

    Google Scholar 

  • de Jong P (1984) A statistical approach to Saaty’s scaling method for priorities. J Math Psychol 28(4):467–478

    Google Scholar 

  • Dunning DJ, Ross QE, Merkhofer MW (2000) Multiattribute utility analysis for addressing Section 316 (b) of the Clean Water Act. Environ Sci Policy 3:7–14

    Google Scholar 

  • Dutta S, Sahana M, Guchhait SK (2017) Assessing anthropogenic disturbance on forest health based on fragment grading in Durgapur Forest Range, West Bengal, India. Spat Inf Res 25(3):501–512

    Google Scholar 

  • Ellison JC (2015) Vulnerability assessment of mangroves to climate change and sea-level rise impacts. Wetlands Ecol Manage 23(2):115–137

    Google Scholar 

  • Fetriyuna H, Fiantis D (2017) Impact of land-use changes on Kuranji River basin functions chapter 8. In: Shivakoti G, Pradhan U, Helmi H (eds) Redefining diversity and dynamics of naturalresources management in Asia, vol 4, pp 105–114. Elsevier. https://doi.org/10.1016/B978-0-12-805451-2.00008-9. Accessed 18 Jan 2020

  • Fiorella M, Ripple WJ (1995) Analysis of conifer forest regeneration using landsat thematic mapper data

    Google Scholar 

  • Flug M, Seitz HL, Scott JF (2000) Multicriteria decision analysis applied to Glen Canyon Dam. J Water Resour Plan Manag 126(5):270–276

    Google Scholar 

  • Forest Rights Act-FRA (2006) Act, rules and guidelines. Ministry of Tribal Affairs, Government of India. https://tribal.nic.in/FRA/data/FRARulesBook.pdf

  • Forest Survey of India (2019) West Bengal. https://fsi.nic.in/isfr19/vol2/isfr-2019-vol-ii-west-bengal.pdf. Accessed on 18 April 2020

  • FSI-Forest Survey of India (2017) Forest cover. https://fsi.nic.in/isfr2017/isfr-forest-cover-2017.pdf. Accessed on 18 April 2020

  • Fuller DO (1998) Trends in NDVI time series and their relation to rangeland and crop production in Senegal, 1987–1993. Int J Remote Sens 19(10):2013–2018

    Google Scholar 

  • Gamon JA, Field CB, Goulden ML, Griffin KL, Hartley AE, Joel G et al (1995) Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol Appl 5(1):28–41

    Google Scholar 

  • Gao X, Huete AR, Ni W, Miura T (2000) Optical–biophysical relationships of vegetation spectra without background contamination. Remote Sens Environ 74(3):609–620

    Google Scholar 

  • Geerken R, Ilaiwi M (2004) Assessment of rangeland degradation and development of a strategy for rehabilitation. Remote Sens Environ 90(4):490–504

    Google Scholar 

  • González-Sanpedro MC, Le Toan T, Moreno J, Kergoat L, Rubio E (2008) Seasonal variations of leaf area index of agricultural fields retrieved from Landsat data. Remote Sens Environ 112(3):810–824. https://doi.org/10.1016/J.RSE.2007.06.018

    Article  Google Scholar 

  • Goodwin NR, Coops NC, Wulder MA, Gillanders S, Schroeder TA, Nelson T (2008) Estimation of insect infestation dynamics using a temporal sequence of Landsat data. Remote Sens Environ 112(9):3680–3689. https://doi.org/10.1016/J.RSE.2008.05.005

    Article  Google Scholar 

  • Gu Y, Brown JF, Verdin JP, Wardlow B (2007) A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central great plains of United States. Geophys Res Lett 34(L06407):1–6

    Google Scholar 

  • Gurung RB, Breidt FJ, Dutin A, Ogle SM (2009) Predicting Enhanced Vegetation Index (EVI) curves for ecosystem modeling applications. Remote Sens Environ 113(10):2186–2193

    Google Scholar 

  • Hardisky MA, Klemas V, Smart RM (1983) The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogram Eng Remote Sens 49:77–83

    Google Scholar 

  • Horler DNH, Ahern FJ (1986) Forestry information content of Thematic Mapper data. Int J Remote Sens 7(3):405–428. https://doi.org/10.1080/01431168608954695

    Article  Google Scholar 

  • Huang C, Wylie B, Yang L, Homer C, Zylstra G (2002) Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. Int J Remote Sens 23(8):1741–1748

    Google Scholar 

  • Huang N, He JS et al (2013) Estimating the spatial pattern of soil respiration in Tibetan alpine grasslands using Landsat TM images and MODIS data. Ecol Ind 26:117–125

    Google Scholar 

  • Huete AR, Jackson RD, Post DF (1985) Spectral response of a plant canopy with different soil backgrounds. Remote Sens Environ 17(1):37–53

    Google Scholar 

  • Huete AR, Liu H, van Leeuwen WJ (1997) The use of vegetation indices in forested regions: issues of linearity and saturation. In: Geoscience and remote sensing, 1997. IGARSS’97. Remote sensing—ascientific vision for sustainable development, 1997 IEEE international, vol 4, pp 1966–1968. IEEE

    Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(1–2):195–213

    Google Scholar 

  • Hunt ER, Rock BN (1989) Detection of changes in leaf water content using near- and middle infrared reflectance. Remote Sens Environ 30(1):43–54. https://doi.org/10.1016/0034-4257(89)90046-1

    Article  Google Scholar 

  • IPCC (2019) Climate change and land. An IPCC Special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, Summary for Policymakers. https://www.ipcc.ch/site/assets/uploads/2019/08/4.-SPM_Approved_Microsite_FINAL.pdf. Accessed on 22 March 2020

  • Jackson RD, Pinter Jr PJ, Reginato RJ, Idso SB (1980) Hand-held radiometry. Agricultural Reviews and Manuals W-19. US Dept. of Agriculture. Science and Education Admin, Oakland, CA

    Google Scholar 

  • Jain P, Sajjad H (2016) Household dependency on forest resources in the Sariska Tiger Reserve (STR), India: implications for management. J Sustain For 35(1):60–74

    Google Scholar 

  • Jain P, Ahmed R, Sajjad H (2016) Assessing and monitoring forest health using a forest fragmentation approach in Sariska Tiger Reserve, India. NorskGeografiskTidsskrift-Norwegian J Geogr 70(5):306–315

    Google Scholar 

  • Jalilova G, Khadka C, Vacik H (2012) Developing criteria and indicators for evaluating sustainable forest management: a case study in Kyrgyzstan. For Policy Econ 21:32–43

    Google Scholar 

  • Jamil M, Ahmed R, Sajjad H (2018) Land suitability assessment for sugarcane cultivation in Bijnor district, India using geographic information system and fuzzy analytical hierarchy process. GeoJournal 83(3):595–611

    Google Scholar 

  • Jensen JR, Lulla K (1987) Introductory digital image processing: a remote sensing perspective. Geocarto Int 2(1):65. https://doi.org/10.1080/10106048709354084

    Article  Google Scholar 

  • Jiang Z, Huete AR, Didan K, Miura T (2008) Development of a two-band enhanced vegetation index without a blue band. Remote Sens Environ 112(10):3833–3845

    Google Scholar 

  • Joubert A, Stewart TJ, Eberhard R (2003) Evaluation of water supply augmentation and water demand management options for the City of Cape Town. J Multi-Criteria Decision Anal 12(1):17–25

    Google Scholar 

  • Kauth RJ, Thomas GS (1976) The tasselled cap—a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. In: LARS symposia, p 159

    Google Scholar 

  • Kunwar RM, Evans A, Mainali J, Ansari AS, Rimal B, Bussmann RW (2018) Change in forest and vegetation cover influencing distribution and uses of plants in the Kailash Sacred Landscape. Nepal. Environment, Development and Sustainability, pp 1–16

    Google Scholar 

  • Kurtz DB, Asch F, Giese M, Hülsebusch C, Goldfarb MC, Casco JF (2016) High impact grazing as a management tool to optimize biomass growth in northern Argentinean grassland. Ecol Ind 63:100–109

    Google Scholar 

  • Laman T (2011) State of the world’s forests. Retrieved from https://www.fao.org/docrep/013/i2000e/i2000e.pdf

  • Landscape Tool Box (2019) https://wiki.landscapetoolbox.org/doku.php/remote_sensing_methods:enhanced_vegetatioindex. Accessed 27 Jan 2020

  • Lausch A, Erasmi S, King DJ, Magdon P, Heurich M (2016) Understanding forest health with remote sensing-part I—A review of spectral traits, processes and remote-sensing characteristics. Remote Sens 8(12):1029

    Google Scholar 

  • Lausch A, Erasmi S, King D, Magdon P, Heurich M (2017) Understanding forest health with remote sensing-Part II—A review of approaches and Data models. Remote Sens 9(2):129. https://doi.org/10.3390/rs9020129

    Article  Google Scholar 

  • Li S, Chen X (2014) A new bare-soil index for rapid mapping developing areas using LANDSAT 8 data. Int Arch Photogramm Remote Sensi Spat Inf Sci 40(4):139

    Google Scholar 

  • Lillesand T, Kiefer RW, Chipman J (2007) Remote sensing and image interpretation, 5th edn. Wiley

    Google Scholar 

  • Liu W, Yamazaki F (2012) Object-based shadow extraction and correction of high-resolution optical satellite images. IEEE J Select Topics Appl Earth Obs RemoteSens 5(4):1296–1302

    Google Scholar 

  • Liu X, Hou Z, Shi Z, Bo Y, Cheng J (2017) A shadow identification method using vegetation indices derived from hyperspectral data. Int J Remote Sens 38(19):5357–5373

    Google Scholar 

  • Major DJ, Baret F, Guyot G (1990) A ratio vegetation index adjusted for soil brightness. Int J Remote Sens 11(5):727–740

    Google Scholar 

  • Malik S, Pal SC, Das B, Chakrabortty R (2019) Assessment of vegetation status of Sali River basin, a tributary of Damodar River in Bankura District, West Bengal, using satellite data. Environ Dev Sustain, 1–35

    Google Scholar 

  • Malmström CM, Thompson MV, Juday GP, Los SO, Randerson JT, Field CB (1997) Inter-annual variation in global-scale net primary production: Testing model estimates. Global Biogeochem Cycles 11(3):367–392

    Google Scholar 

  • Mandal VP, Rehman S, Ahmed R, Masroor M, Kumar P, Sajjad H (2020) Land suitability assessment for optimal cropping sequences in Katihar district of Bihar, India using GIS and AHP. Spat Inf Res, 1–11

    Google Scholar 

  • Matsushita B, Yang W, Chen J, Onda Y, Qiu G (2007) Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: a case study in high-density cypress forest. Sensors 7(11):2636–2651

    Google Scholar 

  • Mensah AA, Sarfo DA, Partey ST (2019) Assessment of vegetation dynamics using remote sensing and GIS: A case of Bosomtwe Range Forest Reserve, Ghana. Egypt J Remote Sens Space Sci 22(2):145–154

    Google Scholar 

  • Miura T, Huete AR, Yoshioka H, Holben BN (2001) An error and sensitivity analysis of atmospheric resistant vegetation indices derived from dark target-based atmospheric correction. Remote Sens Environ 78(3):284–298

    Google Scholar 

  • Moleele N, Ringrose S, Arnberg W, Lunden B, Vanderpost C (2001) Assessment of vegetation indexes useful for browse (forage) prediction in semi-arid rangelands. Int J Remote Sens 22(5):741–756

    Google Scholar 

  • Mondal I, Bandyopadhyay J, Kumar JM (2013) Mangrove zonation and succession pattern of Fazergange and Bakkhali area at Sundarban, W. B., India using remote sensing & GIS techniques. Indian Cartographer 33:311–315

    Google Scholar 

  • Mongabay (2018) State of Forest Report says that India’s forest and tree cover has increased by 1 percent. https://india.mongabay.com/2018/02/state-of-forest-report-says-that-indias-forest-and-tree-cover-has-increased-by-1-percent/. Accessed on 18 April 2020

  • Morrissey AJ, Browne J (2004) Waste management models and their application to sustainable waste management. Waste Manage 24(3):297–308

    Google Scholar 

  • Myneni RB, Williams DL (1994) On the relationship between FAPAR and NDVI. Remote Sens Environ 49:200–211

    Google Scholar 

  • Nagler PL, Cleverly J, Glenn E, Lampkin D, Huete A, Wan Z (2005) Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. Remote Sens Environ 94(1):17–30

    Google Scholar 

  • Nagler PL, Glenn EP, Kim H, Emmerich W, Scott RL, Huxman TE et al (2007) Relationship between evapotranspiration and precipitation pulses in a semiarid rangeland estimated by moisture flux towers and MODIS vegetation indices. J Arid Environ 70(3):443–462

    Google Scholar 

  • Nakajima T, Tao G, Yasuoka Y (2002) Simulated recovery of information in shadow areas on IKONOS image by combing ALS data. In: Proceeding of Asian conference on remote sensing (ACRS)

    Google Scholar 

  • National Forest Policy (1988) Government of India Ministry of Environment and Forests New Delhi. http://asbb.gov.in/Downloads/National%20Forest%20Policy.pdf. Accessed on 18 April 2020

  • Nemani R, Pierce L, Running S, Goward S (1993) Developing satellite-derived estimates of surface moisture status. J Appl Meteorol 32(3):548–557

    Google Scholar 

  • O’Malley LS (1908) Bengal District Gazeteers Bankura. Government of West Bengal, India

    Google Scholar 

  • Ono A, Kajiwara K, Honda Y (2010) Development of new vegetation indexes, shadow index (SI) and water stress trend (WST). Intern. Arch Photogram, Remote Sens Spat Inf Sci 38:710–714

    Google Scholar 

  • Pal SC, Chakrabortty R, Malik S, Das B (2018) Application of forest canopy density model for forest cover mapping using LISS-IV satellite data: a case study of Sali watershed, West Bengal. Model Earth Syst Environ 4(2):853–865

    Google Scholar 

  • Palmer AR, Fortescue A (2004) Remote sensing and change detection in rangelands. Afr J Range Forage Sci 21(2):123–128

    Google Scholar 

  • Paruelo JM, Epstein HE, Lauenroth WK, Burke IC (1997) ANPP estimates from NDVI for the central grassland region of the United States. Ecology 78(3):953–958

    Google Scholar 

  • Podvezko V (2009) Application of AHP technique. J Bus Econ Manag 10(2):181–189

    Google Scholar 

  • Poggi D, Porporato A, Ridolfi L, Albertson JD, Katul GG (2004) The effect of vegetation density on canopy sub-layer turbulence. Bound-Layer Meteorol 111(3):565–587

    Google Scholar 

  • Polidorio AM, Flores FC, Imai NN, Tommaselli AM, Franco C (2003) Automatic shadow segmentation in aerial color images. In XVI Brazilian symposium on computer graphics and imageprocessing, 2003. SIBGRAPI 2003, pp 270–277. IEEE.

    Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C (2012) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards 63(2):965–996

    Google Scholar 

  • Qureshi ME, Harrison SR (2003) Application of the analytic hierarchy process to riparian revegetation policy options. Small-Scale For Econ Manag Policy 2(3):441

    Google Scholar 

  • Rao BV, Briz-Kishore BH (1991) A methodology for locating potential aquifers in a typical semiarid region in India using resistivity and hydrogeological parameters. Geoexploration 27(1–2):55–64

    Google Scholar 

  • Richardson AJ, Wiegand CL (1977) Distinguishing vegetation from soil background information. Photogramm Eng Remote Sens 43(12):1541–1552

    Google Scholar 

  • Rikimaru A, Miyatake S (1997) Development of forest canopy density mapping and monitoring model using indices of vegetation, bare soil and shadow, presented paper for the 18th ACRS. Kuala Lumpur, Malaysia

    Google Scholar 

  • Rouse Jr J, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the Great Plains with ERTS, pp 309–317. NASA, Washington. https://ntrs.nasa.gov/search.jsp?R=19740022614. Accessed 5 Jan 2019

  • Roy PS, Miyatake S, Rikimaru A (1997) Biophysical spectral response modelling approach for forest density stratification. In: Proceedings of the 18th Asian conference on remote sensing

    Google Scholar 

  • Saaty T (1980a) The analytic process: planning, priority setting, resources allocation. McGraw, New York

    Google Scholar 

  • Saaty TL (1980b) The analytical hierarchy process. MCGraw-Hill, New York

    Google Scholar 

  • Saaty TL, Decision HTMA (1990) The analytic hierarchy process. Eur J Oper Res 48:9–26

    Google Scholar 

  • Sader SA (1989) Multispectral and seasonal characteristics of northern hardwood and boreal forest types in Maine. Image Process 89:109–116

    Google Scholar 

  • Sahana M, Dutta S, Sajjad H (2019) Assessing land transformation and its relation with land surface temperature in Mumbai city, India using geospatial techniques. Int J Urban Sci 23(2):205–225

    Google Scholar 

  • Sahana M, Sajjad H, Ahmed R (2015) Assessing spatio-temporal health of forest cover using forest canopy density model and forest fragmentation approach in Sundarban reserve forest, India. Model Earth Syst Environ 1(4):49

    Google Scholar 

  • Sharma J, Chaturvedi RK, Bala G, Ravindranath NH (2015) Assessing “inherent vulnerability” of forests: a methodological approach and a case study from Western Ghats, India. Mitig Adapt Strat Glob Change 20(4):573–590

    Google Scholar 

  • Simula, M. (2009). Towards defining forest degradation: comparative analysis of existing definitions. Forest Resources Assessment Working Paper154.

    Google Scholar 

  • Smith WB (2002) Forest inventory and analysis: a national inventory and monitoring program. Environ Pollut 116:S233–S242

    Google Scholar 

  • Solberg S, Næsset E, Lange H, Bollandsås OM (2004) Remote sensing of forest health. Int Arch Photogramm Remote Sens Spat Inf Sci 36(Part 8):W2

    Google Scholar 

  • Turner DP, Cohen WB, Kennedy RE, Fassnacht KS, Briggs JM (1999) Relationships between Leaf Area Index and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sens Environ 70(1):52–68. https://doi.org/10.1016/S0034-4257(99)00057-7

    Article  Google Scholar 

  • United States Geological Survey (USGS) site. https://earthexplorer.usgs.gov/. Accessed on 17 Sept 2019

  • Verbesselt J, Jonsson P, Lhermitte S, Van Arad J, Coppin P (2006) Evaluating satellite and climate data-derived indices as fire risk indicators in savanna ecosystems. IEEE Trans Geosci Remote Sens 44(6):1622–1632

    Google Scholar 

  • Vogelmann JE, Rock BN (1988) Assessing forest damage in high-elevation coniferous forests in Vermont and New Hampshire using thematic mapper data. Remote Sens Environ 24(2):227–246. https://doi.org/10.1016/0034-4257(88)90027-2

    Article  Google Scholar 

  • Wang H, Chen F, Zhang R, Qin L (2017) Seasonal dynamics of vegetation of the central Loess Plateau (China) based on tree rings and their relationship to climatic warming. Environ Dev Sustain 19(6):2535–2546

    Google Scholar 

  • Wellens J (1997) Rangeland vegetation dynamics and moisture availability in Tunisia: an investigation using satellite and meteorological data. J Biogeogr 24(6):845–855

    Google Scholar 

  • Westergaard-Nielsen A, Lund M, Hansen BU, Tamstorf MP (2013) Camera derived vegetation greenness index as proxy for gross primary production in a low Arctic wetland area. ISPRS J Photogramme Remote Sens 86:89–99

    Google Scholar 

  • Wiegand CL, Richardson AJ, Escobar DE, Gerbermann AH (1991) Vegetation indices in crop assessments. Remote Sens Environ 35:105–119

    Google Scholar 

  • Wilkie DS, Bennett EL, Peres CA, Cunningham AA (2011) The empty forest revisited. Ann N Y Acad Sci 1223(1):120–128

    Google Scholar 

  • Wilson EH, Sader SA (2002) Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens Environ 80(3):385–396. https://doi.org/10.1016/S0034-4257(01)00318-2

    Article  Google Scholar 

  • Wolfslehner B, Vacik H (2008) Evaluating sustainable forest management strategies with the analytic network process in a pressure-state-response framework. J Environ Manage 88(1):1–10

    Google Scholar 

  • Wulder MA, Dymond CC, White JC, Leckie DG, Carroll AL (2006) Surveying mountain pine beetle damage of forests: a review of remote sensing opportunities. For Ecol Manage 221(1–3):27–41

    Google Scholar 

  • WWF-World Wildlife Fund (2020) Threats: deforestation and forest degradation. https://www.worldwildlife.org/threats/deforestation-and-forest-degradation. Accessed on 18 April 2020

  • Xue J, Su B (2017) Significant remote sensing vegetation indices: a review of developments and applications. J Sens

    Google Scholar 

  • Yengoh GT, Dent D, Olsson L, Tengberg AE, Tucker III CJ (2015) Use of the Normalized Difference Vegetation Index (NDVI) to assess Land degradation at multiple scales: current status, future trends, and practical considerations. Springer

    Google Scholar 

  • Zhan Q, Shi W, Xiao Y (2005) Quantitative analysis of shadow effects in high-resolution images of urban areas. Int Arch Photogramm Remote Sens 36(8/W27)

    Google Scholar 

  • Zhao H, Chen X (2005) Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. In: Geoscience and Remote sensing symposium, 2005. IGARSS’05. Proceedings. 2005 IEEE international, vol 3, pp 1666–1668. IEEE

    Google Scholar 

  • Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res Atmos 106(D17):20069–20083

    Google Scholar 

  • Zhou Y, Yang G, Wang S, Wang L, Wang F (2014) A new index for mapping built-up and bare land areas from Landsat-8 OLI data. Remote Sens. Retrieved from https://www.tandfonline.com/doi/abs/10.1080/2150704X.2014.973996. Accessed 5 Jan 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyamal Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, S., Rehman, S., Sahana, M., Sajjad, H. (2021). Assessing Forest Health using Geographical Information System Based Analytical Hierarchy Process: Evidences from Southern West Bengal, India. In: Shit, P.K., Pourghasemi, H.R., Das, P., Bhunia, G.S. (eds) Spatial Modeling in Forest Resources Management . Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-56542-8_3

Download citation

Publish with us

Policies and ethics