Skip to main content

Estimation of Net Primary Productivity: An Introduction to Different Approaches

  • Chapter
  • First Online:
Spatial Modeling in Forest Resources Management

Abstract

The net primary productivity (NPP) is defined as the net carbon gain by plants in natural and agricultural ecosystems, which is computed by subtracting the autotrophic respiration from the gross photosynthetic carbon uptake by the ecosystems. It acts as the indicators of carbon sequestration, ecosystem health, and agricultural yield which are important in the context of climate change, its impact and mitigation, and food security. The NPP can be estimated in multiple ways including the direct and indirect measurements and modelling. The various direct NPP measurements are ground-based in situ observations of ecosystem-atmosphere carbon flux such as the micrometeorological flux-gradient method, eddy covariance, flux chamber measurements etc. The indirect measurements of NPP include the satellite-derived NPP estimates which are computed from the directly measured spectral reflectances, using different biophysical relations such as the light use efficiency model etc. However the accuracy of these products varies geospatially and largely depends on the retrieval of input parameters and representativeness of underlying model parameterization. There are two major modelling approaches to estimate the NPP namely bottom-up and top-down estimates. The bottom-up models compute the NPP from the directly recorded variables such as temperature, precipitation, radiation, wind, atmospheric CO2 concentration etc. using the biome-specific functional relations due to which these are also known as the process-based models. The top-down or inverse models use the matrix inversion method to predict the sources and sinks of CO2 emission in a region from the directly measured concentrations by the surface stations and/or satellites and thus the NPP of that region. The NPP estimates from measurements and models are used to calculate the carbon budgets at different scales from ecosystem-level to global scale. However significant uncertainties exist in such estimates due to insufficient surface measurements, under-representation of several regions and ecosystems, imperfect boundary conditions and parameterizations in models. While the direct measurements provide more accurate estimates of NPP, these require to be carried over for long duration using multiple different instruments which are prone to errors and data-loss whereas the models can provide large-scale estimates of NPP but need to be validated against realistic in situ measurements across an wide array of ecosystems. The aforementioned aspects of NPP estimation are discussed in detail in the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahl DE, Gower ST, Mackay DS, Burrows SN, Norman JM, Diak GR (2004) Heterogeneity of light use efficiency in a northern Wisconsin forest: Implications for modeling net primary production with remote sensing. Remote Sens Environ 93(1–2):168–178. https://doi.org/10.1016/j.rse.2004.07.003

    Article  Google Scholar 

  • Alados I, Foyo-Moreno I, Alados-Arboledas L (1996) Photosynthetically active radiation: measurements and modelling. Agric For Meteorol 78(1–2):121–131. https://doi.org/10.1016/0168-1923(95)02245-7

    Article  Google Scholar 

  • Anav A, Friedlingstein P, Kidston M, Bopp L, Ciais P, Cox P, Jones C, Jung M, Myneni M, Zhu Z (2013) Evaluating the land and ocean components of the global carbon cycle in the CMIP5 earth system models. J Clim 26(1s8):6801–6843. https://doi.org/10.1175/JCLI-D-12-00417.1

  • Arora VK, Boer GJ (2005) A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Glob Change Biol 11:39–59. https://doi.org/10.1111/j.1365-2486.2004.00890.x

    Article  Google Scholar 

  • Arora VK, Boer GJ (2010) Uncertainties in the 20th century carbon budget associated with land use change. Glob Change Biol 27:3310–3348. https://doi.org/10.1111/j.1365-2486.2010.02202.x

    Article  Google Scholar 

  • Aubinet M, Feigenwinter C, Heinesch B, Bernhofer C, Canepa E, Lindroth A, Montagnani L, Rebmann C, Sedlak P, Van Gorsel E (2010) Direct advection measurements do not help to solve the night-time CO2 closure problem: evidence from three different forests. Agric For Meteorol 150(5):655–664. https://doi.org/10.1016/j.agrformet.2010.01.016

  • Aubinet M, Vesala T, Papale D (2012) Eddy covariance: a practical guide to measurement and data analysis. Springer.

    Google Scholar 

  • Baghi R, Durand P, Jambert C, Jarnot C, Delon C, Serça D, Keravec P (2012) A new disjunct eddy-covariance system for BVOC flux measurements—validation on CO2 and H2O fluxes. Atmos Meas Tech 5:3119–3132. https://doi.org/10.5194/amt-5-3119-2012

    Article  Google Scholar 

  • Baker JM, Norman JM, Bland WL (1992) Field-scale application of flux measurement by conditional sampling. Agric For Meteorol 62:31–52. https://doi.org/10.1016/0168-1923(92)90004-N

    Article  Google Scholar 

  • Baldocchi DD (2001) Assessing ecosystem carbon balance: problems and prospects of the eddy covariance technique. Ann Rev Ecol Syst

    Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol 9(4):479–492. https://doi.org/10.1046/j.1365-2486.2003.00629.x

  • Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteor Soc 82(February):2415–2434. https://doi.org/10.1175/1520-0477(2001)082%3c2415:FANTTS%3e2.3.CO;2

    Article  Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Progress in photosynthesis research. Martinus Nijhoff Publishers, Dordrecht. https://doi.org/10.1007/978-94-017-0519-6_48

  • Bao G, Bao Y, Qin Z, Xin X, Bao Y, Bayarsaikan S, Chuntai B (2016) Modeling net primary productivity of terrestrial ecosystems in the semi-arid climate of the Mongolian Plateau using LSWI-based CASA ecosystem model. Int J Appl Earth Obs Geoinf 46:84–93. https://doi.org/10.1016/j.jag.2015.12.001

    Article  Google Scholar 

  • Barman R, Jain AK, Liang M (2014a) Climate-driven uncertainties in modeling terrestrial gross energy and water fluxes: A site level to global-scale analysis. Glob Change Biol 20(6):1885–1900

    Article  Google Scholar 

  • Barman R, Jain AK, Liang M (2014b) Climate-driven uncertainties in modeling terrestrial gross primary production: A site level to global-scale analysis. Glob Change Biol 20(5):1394–1411. https://doi.org/10.1111/gcb.12474

    Article  Google Scholar 

  • Barr AG, Richardson AD, Hollinger DY, Papale D, Arain MA, Black TA, Schaeffer K (2013) Use of change-point detection for friction-velocity threshold evaluation in eddy-covariance studies. Agric For Meteorol 171:31–45. https://doi.org/10.1016/j.agrformet.2012.11.023

    Article  Google Scholar 

  • Bastos A, O’Sullivan M, Ciais P, Makowski D, Sitch S, Friedlingstein P, Chevallier F, Rödenbeck C, Pongratz J, Luijkx IT, Patra PK, Peylin P, Canadell JG, Lauerwald R, Li W, Smith NE, Peters W, Goll DS, Jain AK, Kato E, Lienert S, Lombardozzi DL, Haverd V, Nabel JEMS, Poulter B, Tian H, Walker AP, Zaehle S (2020) Sources of uncertainty in regional and global terrestrial CO2 exchange estimates. Glob Biogeochem Cycles 34(2):e2019GB006393. https://doi.org/10.1029/2019GB006393

  • Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Papale D (2010) Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 329:834–838. https://doi.org/10.1126/science.1184984

    Article  Google Scholar 

  • Beringer J, Hutley LB, McHugh I, Arndt SK, Campbell D, Cleugh HA, Cleverly J, de Dios VS, Eamus D, Evans B, Ewenz C, Grace P, Griebel A, Haverd V, Hinko-Najera N, Huete A, Isaac P, Kanniah K, Leuning R, Liddell MJ, Macfarlane C, Meyer W, Moore C, Pendall E, Phillips A, Phillips RL, Prober SM, Restrepo-Coupe N, Rutledge S, Schroder I, Silberstein R, Southall P, Yee MS, Tapper NJ, van Gorsel E, Vote C, Walker J, Wardlaw T (2016) An introduction to the Australian and New Zealand flux tower network—OzFlux. Biogeosciences 13(21). https://doi.org/10.5194/bg-13-5895-2016

  • Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR, Long SP (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ 24:2. https://doi.org/10.1046/j.1365-3040.2001.00668.x

    Article  Google Scholar 

  • Betts RA (2000) Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408:187–190. https://doi.org/10.1038/35041545

    Article  Google Scholar 

  • Bonan GB, Levis S (2006) Evaluating aspects of the community land and atmosphere models (CLM3 and CAM3) using a dynamic global vegetation model. J Clim 19(11):2290–2301. https://doi.org/10.1175/JCLI3741.1

  • Bonan GB, Lawrence PJ, Oleson KW, Levis S, Jung M, Reichstein M, Lawrence DM, Swenson SC (2011) Improving canopy processes in the community land model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J Geophys Res 116. https://doi.org/10.1029/2010jg001593

  • Bongaarts J (2019) IPBES, 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services. Popul Dev Rev. https://doi.org/10.1111/padr.12283

  • Bousquet P, Ciais P, Monfray P, Balkanski Y, Ramonet M, Tans P (1996) Influence of two atmospheric transport models on inferring sources and sinks of atmospheric CO2. Tellus, Ser B Chem Phys Meteorol 48B:568–582. https://doi.org/10.3402/tellusb.v48i4.15932

    Article  Google Scholar 

  • Bousquet P, Ciais P, Peylin P, Ramonet M, Monfray P (1999) Inverse modeling of annual atmospheric CO2 sources and sinks 1. Method and control inversion. J Geophys Res Atmos 104(D21):26161–26178. https://doi.org/10.1029/1999JD900342

  • Bowling DR, Delany AC, Turnipseed AA, Baldocchi DD, Monson RK (1999) Modification of the relaxed eddy accumulation technique to maximize measured scalar mixing ratio differences in updrafts and downdrafts. J Geophys Res Atmos 104:9121–9133. https://doi.org/10.1029/1999JD900013

    Article  Google Scholar 

  • Bowling DR, Tans PP, Monson RK (2001) Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2. Glob Change Biol 7:127–145. https://doi.org/10.1046/j.1365-2486.2001.00400.x

    Article  Google Scholar 

  • Bréda NJJ (2003) Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot 54(392):2403–2417. https://doi.org/10.1093/jxb/erg263

    Article  Google Scholar 

  • Buermann W, Dong J, Zeng X, Myneni RB, Dickinson RE (2001) Evaluation of the utility of satellite-based vegetation leaf area index data for climate simulations. J Clim 14:3536–3550. https://doi.org/10.1175/1520-0442(2001)014%3c3536:EOTUOS%3e2.0.CO;2

    Article  Google Scholar 

  • Burba G (2013) Eddy covariance method-for scientific, industrial, agricultural, and regulatory applications. Book

    Google Scholar 

  • Burba G (2019) Illustrative maps of past and present eddy covariance measurement locations: II. High-resolution images. https://doi.org/10.13140/RG.2.2.33191.70561

  • Burba G, Anderson D (2007) Introduction to the eddy covariance method: general guidelines and conventional workflow. Li-Cor Biosci 141

    Google Scholar 

  • Businger JA, Oncley SP (1990) Flux measurement with conditional sampling. J Atmos Oceanic Technol 7:349–352. https://doi.org/10.1175/1520-0426(1990)007%3c0349:fmwcs%3e2.0.co;2

    Article  Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28(2):181–189. https://doi.org/10.1175/1520-0469(1971)028%3c0181:fprita%3e2.0.co;2

    Article  Google Scholar 

  • Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 62(3):241–252. https://doi.org/10.1016/S0034-4257(97)00104-1

    Article  Google Scholar 

  • Cervarich M, Shu S, Jain AK, Arneth A, Canadell J, Friedlingstein P, Houghton RA, Kato E, Koven C, Patra P, Poulter B, Sitch S, Stocker B, Viovy N, Wiltshire A, Zeng N (2016). The terrestrial carbon budget of South and Southeast Asia. Environ Res Lett 11(10):105006. https://doi.org/10.1088/1748-9326/11/10/105006

  • Chakraborty S, Tiwari YK, Deb Burman PK, Baidya Roy S, Valsala V (2020) Observations and modeling of GHG concentrations and fluxes over India. In: Krishnan R, Sanjay J, Gnanaseelan C, Mujumdar M, Kulkarni A, Chakraborty S (eds) Assessment of climate change over the Indian region. Springer, Singapore. https://doi.org/10.1007/978-981-15-4327-2_4

  • Chapin FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Schulze ED (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems. https://doi.org/10.1007/s10021-005-0105-7

  • Chevallier F, Viovy N, Reichstein M, Ciais P (2006) On the assignment of prior errors in Bayesian inversions of CO2 surface fluxes. Geophys Res Lett 33(L13802). https://doi.org/10.1029/2006GL026496

  • Chou WW, Wofsy SC, Harriss RC, Lin JC, Gerbig C, Sachse GW (2002) Net fluxes of CO2 in Amazonia derived from aircraft observations. J Geophys Res Atmos 107(D22):4614. https://doi.org/10.1029/2001JD001295

    Article  Google Scholar 

  • Cihlar J, Caramori PH, Schuepp PH, Desjardins RL, Macpherson JI (1992) Relationship between satellite-derived vegetation indices and aircraft-based CO2 measurements. J Geophys Res 97(D17):18515–18521. https://doi.org/10.1029/92jd00655

    Article  Google Scholar 

  • Clark DB, Mercado LM, Sitch S, Jones CD, Gedney N, Best MJ, Pryor M, Rooney GG, Essery RLH, Blyth E, Boucher O, Harding RJ, Huntingford C, Cox PM (2011) The joint UK land environment simulator (JULES), model description—Part 2: Carbon fluxes and vegetation dynamics. Geosci Model Dev 4(3):701–722. https://doi.org/10.5194/gmd-4-701-2011

  • Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental-regulation of stomatal conductance, photosynthesis and transpiration—a model that includes a laminar boundary-layer. Agric For Meteorol 54(2–4):107–136. https://doi.org/10.1016/0168-1923(91)90002-8

    Article  Google Scholar 

  • Collatz GJ, Ribas-Carbo M, Berry JA (1992) Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust J Plant Physiol 19(1139):519–539. https://doi.org/10.1071/PP9920519

    Article  Google Scholar 

  • Coops NC, Waring RH, Law BE (2005) Assessing the past and future distribution and productivity of ponderosa pine in the Pacific Northwest using a process model, 3-PG. Ecol Model 183(1):107–124. https://doi.org/10.1016/j.ecolmodel.2004.08.002

    Article  Google Scholar 

  • Cox PM, Betts RA, Collins M, Harris PP, Huntingford C, Jones CD (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoret Appl Climatol 78:137–156. https://doi.org/10.1007/s00704-004-0049-4

    Article  Google Scholar 

  • Cramer W, Kicklighter DW, Bondeau A, Iii BM, Churkina G, Nemry B, Ruimy A, Schloss AL, ThE Participants OF ThE Potsdam NpP Model Intercomparison (1999). Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob Change Biol 5:1–15. https://doi.org/10.1046/j.1365-2486.1999.00009.x

  • Cui Y, Xiao X, Zhang Y, Dong J, Qin Y, Doughty RB, Zhang G, Wang J, Wu X, Qin Y, Zhou S (2017) Temporal consistency between gross primary production and solar-induced chlorophyll fluorescence in the ten most populous megacity areas over years. Sci Rep 7:14963. https://doi.org/10.1038/s41598-017-13783-5

  • Dai Y, Dickinson R, Wang Y (2004) A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J Clim 17:2281–2299. https://doi.org/10.1175/1520-0442(2004)017%3c2281:ATMFCT%3e2.0.CO;2

    Article  Google Scholar 

  • Dargaville R, McGuire AD, Rayner P (2002) Estimates of large-scale fluxes in high latitudes from terrestrial biosphere models and an inversion of atmospheric CO2 measurements. Clim Change 55:273–285. https://doi.org/10.1023/A:1020295321582

    Article  Google Scholar 

  • Deb Burman PK, Sarma D, Williams M, Karipot A, Chakraborty S (2017) Estimating gross primary productivity of a tropical forest ecosystem over north-east India using LAI and meteorological variables. J Earth Syst Sci 126(7):1–16. https://doi.org/10.1007/s12040-017-0874-3

    Article  Google Scholar 

  • Deb Burman PK, Prabha TV, Morrison R, Karipot A (2018) A case study of turbulence in the nocturnal boundary layer during the Indian summer monsoon. Bound-Layer Meteorol 169(1):115–138

    Google Scholar 

  • Deb Burman PK, Sarma D, Morrison R, Karipot A, Chakraborty S (2019) Seasonal variation of evapotranspiration and its effect on the surface energy budget closure at a tropical forest over north-east India. J Earth Syst Sci 128(5):1–21. https://doi.org/10.1007/s12040-019-1158-x

    Article  Google Scholar 

  • Deb Burman PK, Sarma D, Chakraborty S, Karipot A, Jain AK (2020a) The effect of Indian summer monsoon on the seasonal variation of carbon sequestration by a forest ecosystem over North-East India. SN Appl Sci 2(2):154. https://doi.org/10.1007/s42452-019-1934-x

    Article  Google Scholar 

  • Deb Burman PK, Shurpali NJ, Chowdhuri S, Karipot A, Chakraborty S, Lind SE, Prabha TV (2020b) Eddy covariance measurements of CO2 exchange from agro-ecosystems located in subtropical (India) and boreal (Finland) climatic conditions. J Earth Syst Sci 129(1):43. https://doi.org/10.1007/s12040-019-1305-4

    Article  Google Scholar 

  • Demarty J, Chevallier F, Friend AD, Viovy N, Piao S, Ciais P (2007) Assimilation of global MODIS leaf area index retrievals within a terrestrial biosphere model. Geophys Res Lett 34(15):L15402. https://doi.org/10.1029/2007GL030014

    Article  Google Scholar 

  • Deng F, Chen JM, Plummer S, Chen M, Pisek J (2006) Algorithm for global leaf area index retrieval using satellite imagery. IEEE Trans Geosci Remote Sens 44(8):2219–2229. https://doi.org/10.1109/TGRS.2006.872100

    Article  Google Scholar 

  • Desjardins RL (1972) A study of carbon dioxide and sensible heat fluxes using the eddy correlation technique. Cornell University

    Google Scholar 

  • Desjardins RL, Hart RL, Macpherson JI, Schuepp PH, Verma SB (1992) Aircraft- and tower-based fluxes of carbon dioxide, latent, and sensible heat. J Geophys Res 97(D17):18477–18485. https://doi.org/10.1029/92jd01625

    Article  Google Scholar 

  • Dyer AJ (1974) A review of flux-profile relationships. Bound-Layer Meteorol 7(3):363–372. https://doi.org/10.1007/BF00240838

    Article  Google Scholar 

  • Dyer AJ, Hicks BB (1970) Flux-gradient relationships in the constant flux layer. Q J R Meteorol Soc 96(410):715–721. https://doi.org/10.1002/qj.49709641012

    Article  Google Scholar 

  • El-Masri B, Barman R, Meiyappan P, Song Y, Liang M, Jain AK (2013) Carbon dynamics in the Amazonian Basin : integration of eddy covariance and ecophysiological data with a land surface model. Agric For Meteorol 182–183:156–167. https://doi.org/10.1016/j.agrformet.2013.03.011

    Article  Google Scholar 

  • Enting IG, Pearman GI (1986) The use of observations in calibrating and validating carbon cycle models. In: The changing carbon cycle. Springer, New York. https://doi.org/10.1007/978-1-4757-1915-4_21

  • Etzold S, Buchmann N, Eugster W (2010) Contribution of advection to the carbon budget measured by eddy covariance at a steep mountain slope forest in Switzerland. Biogeosciences 7(8):2461–2475. https://doi.org/10.5194/bg-7-2461-2010

    Article  Google Scholar 

  • Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C et al (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107(1):43–69. https://doi.org/10.1016/S0168-1923(00)00225-2

    Article  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Ann Rev Plant Physiol 33(1):317–345. https://doi.org/10.1146/annurev.pp.33.060182.001533

    Article  Google Scholar 

  • Farquhar GD, Von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90. https://doi.org/10.1007/BF00386231

    Article  Google Scholar 

  • Fensholt R, Sandholt I (2003) Derivation of a shortwave infrared water stress index from MODIS near- and shortwave infrared data in a semiarid environment. Remote Sens Environ 87:111–121. https://doi.org/10.1016/j.rse.2003.07.002

    Article  Google Scholar 

  • Fensholt R, Sandholt I, Rasmussen MS (2004) Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens Environ 91:490–507. https://doi.org/10.1016/j.rse.2004.04.009

    Article  Google Scholar 

  • Foken T (2008) Micrometeorology. Micrometeorology. https://doi.org/10.1007/978-3-540-74666-9

    Article  Google Scholar 

  • Foken T, Göckede M, Mauder M, Mahrt L, Amiro B, Munger W (2004) Post-field data quality control. In: Handbook of micrometeorology, pp 181–208. https://doi.org/10.1007/1-4020-2265-4_9

  • Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem Cycles 10(4):603–628. https://doi.org/10.1029/96GB02692

    Article  Google Scholar 

  • Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A, Liddicoat SK, Knutti R (2014) Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J Clim 27(2):511–526. https://doi.org/10.1175/JCLI-D-12-00579.1

    Article  Google Scholar 

  • Friedlingstein P, Jones MW, Sullivan M, Andrew RM, Hauck J, Peters GP, Peters W, Pongratz J, Sitch S, Le Quéré C, Bakker DCE, Canadell JG, Ciais P, Jackson RB, Anthoni P, Barbero L, Bastos A, Bastrikov V, Becker M, Bopp L, Buitenhuis E, Chandra N, Chevallier F, Chini LP, Currie KI, Feely RA, Gehlen M, Gilfillan D, Gkritzalis T, Goll DS, Gruber N, Gutekunst S, Harris I, Haverd V, Houghton RA, Hurtt G, Ilyina T, Jain AK, Joetzjer E, Kaplan JO, Kato E, Goldewijk KK, Korsbakken JI, Landschützer P, Lauvset SK, Lefèvre N, Lenton N, Lienert S, Lombardozzi D, Marland G, McGuire PC, Melton JR, Metzl N, Munro DR, Nabel JEMS, Nakaoka S-I, Neill C, Omar AM, Ono T, Peregon A, Pierrot D, Poulter B, Rehder G, Resplandy L, Robertson E, Rödenbeck C, Séférian R, Schwinger J, Smith N, Tans PP, Tian H, Tilbrook B, Tubiello FN, van der Werf GR, Wiltshire AJ, Zaehle S (2019) Global carbon budget 2019. Earth Syst Sci Data 11(4):1783–1838. https://doi.org/10.5194/essd-11-1783-2019

  • Friend AD, Arneth A, Kiang NY, Lomas M, Ogee J, Rödenbeck C, Running SW, Santaren JD, Sitch S, Viovy N, Ian Woodward F (2007) FLUXNET and modelling the global carbon cycle. Global Change Biol 13(3):610–633. https://doi.org/10.1111/j.1365-2486.2006.01223.x

  • Gaman A, Rannik Ü, Aalto P, Pohja T, Siivola E, Kulmala M, Vesala T (2004) Relaxed eddy accumulation system for size-resolved aerosol particle flux measurements. J Atmos Oceanic Technol 21:933–943. https://doi.org/10.1175/1520-0426(2004)021%3c0933:REASFS%3e2.0.CO;2

    Article  Google Scholar 

  • Ganguly S, Nemani RR, Zhang G, Hashimoto H, Milesi C, Michaelis A, Wang W, Votava P, Samanta A, Melton F, Dungan JL, Vermote E, Gao F, Knyazikhin Y, Myneni RB (2012) Generating global Leaf Area Index from Landsat: algorithm formulation and demonstration. Remote Sens Environ 122:185-2-2. https://doi.org/10.1016/j.rse.2011.10.032

  • Garcia de Cortázar V, Nobel PS (1990) Worldwide environmental productivity indices and yield predictions for a cam plant, Opuntia ficus-indica, including effects of doubled CO2 levels. Agric For Meteorol 49:261–279. https://doi.org/10.1016/0168-1923(90)90001-M

    Article  Google Scholar 

  • Geissbühler P, Siegwolf R, Eugster W (2000) Eddy covariance measurements on mountain slopes: the advantage of surface-normal sensor orientation over a vertical set-up. Bound-Layer Meteorol 96:371–392. https://doi.org/10.1023/A:1002660521017

    Article  Google Scholar 

  • Gervois S, de Noblet-Ducoudré N, Viovy N, Ciais P, Brisson N, Seguin B, Perrier A (2004) Including croplands in a global biosphere model: methodology and evaluation at specific sites. Earth Interact. https://doi.org/10.1175/1087-3562(2004)8%3c1:iciagb%3e2.0.co;2

    Article  Google Scholar 

  • Gnanamoorthy P, Selvam V, Ramasubramanian R, Nagarajan R, Chakraborty S, Deb Burman PK, Karipot A (2019) Diurnal and seasonal patterns of soil CO2 efflux from the Pichavaram mangroves, India. Environ Monit Assess 191(4)

    Google Scholar 

  • Gnanamoorthy P, Selvam V, Deb Burman PK, Chakraborty S, Karipot A, Nagarajan R, Ramasubramanian R, Song Q, Zhang Y, Grace J (2020) Seasonal variations of net ecosystem (CO2) exchange in the Indian tropical mangrove forest of Pichavaram. Estuar, Coast Shelf Sci 243:106828

    Google Scholar 

  • Govindje (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Funct Plant Biol 22:131–160. https://doi.org/10.1071/pp9950131

    Article  Google Scholar 

  • Graven HD, Keeling RF, Piper SC, Patra PK, Stephens BB, Wofsy SC, Welp LR, Sweeney C, Tans PP, Kelley JJ, Daube BC, Kort EA, Santoni GW, Bent JD (2013) Enhanced seasonal exchange of CO2 by Northern ecosystems since 1960. Science 341(6150):1085–1089. https://doi.org/10.1126/science.1239207

  • Grossmann K, Frankenberg C, Magney TS, Hurlock SC, Seibt U, Stutz J (2018) PhotoSpec: a new instrument to measure spatially distributed red and far-red Solar-Induced Chlorophyll Fluorescence. Remote Sens Environ 216:311–327. https://doi.org/10.1016/j.rse.2018.07.002

    Article  Google Scholar 

  • Guanter L, Alonso L, Gómez-Chova L, Amorós-López J, Vila J, Moreno J (2007) Estimation of solar-induced vegetation fluorescence from space measurements. Geophys Res Lett 34:L08401. https://doi.org/10.1029/2007GL029289

    Article  Google Scholar 

  • Guanter L, Frankenberg C, Dudhia A, Lewis PE, Gómez-Dans J, Kuze A, Suto H, Grainger RG (2012) Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sens Environ 12:236–251. https://doi.org/10.1016/j.rse.2012.02.006

  • Guanter L, Zhang Y, Jung M, Joiner J, Voigt M. Berry JA, Frankenberg C, Huete AR, Zarco-Tejada P, Lee J-E, Moran M-S, Ponce-Campos G, Beer C, Camps-Valls G, Buchmann N, Gianelle D, Klumpp K, Cescatti A, Bake JM, Griffis TJ (2014) Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc Natl Acad Sci U S A 111(14):E1327–E1333. https://doi.org/10.1073/pnas.1320008111

  • Guenther A, Baugh W, Davis K, Hampton G, Harley P, Klinger L, Vierling L, Zimmerman P, Allwine W, Dilts S, Lamb B, Westberg H, Baldocchi D, Geron C, Pierce T (1996) Isoprene fluxes measured by enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer gradient, and mixed layer mass balance techniques. J Geophys Res Atmos 101:18555–18567. https://doi.org/10.1029/96jd00697

  • Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., Bruhwiler L, Chen Y-H, Ciais P, Fan S, Fung IY, Gloor M, Heimann M, Higuchi K, John K, Maki T, Maksyutov S, Masarie K, Peylin P, Prather M, Pak BC, Randerson J, Sarmiento J, Taguchi S, Takahashi T, Yuen CW (2002) Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415:626–629. https://doi.org/10.1038/415626a

  • Gurney KR, Law RM, Denning AS, Rayner PJ, Pak BC, Baker D, Bousquet P, Bruhwiler L, Chen Y-H, Ciais P, Fung IY, Heimann M, John J, Maki T, Maksyutov S, Peylin P, Prather M, Taguchi, S. (2004). Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks. Global Biogeochem Cycles 18(1):GB1010. https://doi.org/10.1029/2003gb002111

  • Gu L, Falge EM, Boden T, Baldocchi DD, Black TA, Saleska SR, Suni T, Verma SB, Vesala T, Wofsy SC, Xu L (2005) Objective threshold determination for nighttime eddy flux filtering. Agric For Meteorol 128(3–4):179–197. https://doi.org/10.1016/j.agrformet.2004.11.006

  • Heimann M, Kaminski T (1999) Inverse modelling approaches to infer surface trace gas fluxes from observed atmospheric mixing ratios. In Approaches to scaling a trace gas fluxes in ecosystems. Elsevier B.V., p. 2770295. https://doi.org/10.1016/S0167-5117(98)80035-9

  • He L, Magney T, Dutta D, Yin Y, Köhler P, Grossmann K, Stutz J, Dold C, Hatfield J, Guan K, Peng B, Frankenberg C (2020) From the ground to space: using solar-induced chlorophyll fluorescence to estimate crop productivity. Geophys Res Lett 47(7):e2020GL087474. https://doi.org/10.1029/2020GL087474

  • Hicks BB, McMillen RT (1984) A simulation of the Eddy accumulation method for measuring pollutant fluxes. J Climate Appl Meteorol 23:637–643. https://doi.org/10.1175/1520-0450(1984)023%3c0637:ASOTEA%3e2.0.CO;2

    Article  Google Scholar 

  • Hörtnagl L, Clement R, Graus M, Hammerle A, Hansel A, Wohlfahrt G (2010) Dealing with disjunct concentration measurements in eddy covariance applications: a comparison of available approaches. Atmos Environ 44:2024–2032. https://doi.org/10.1016/j.atmosenv.2010.02.042

    Article  Google Scholar 

  • Houweling S, Breon F-M, Aben I, Rödenbeck C, Gloor M, Heimann M, Ciais P (2003) Inverse modeling of CO2 sources and sinks using satellite data: a synthetic inter-comparison of measurement techniques and their performance as a function of space and time. Atmos Chem Phys Discuss 4:523–538. https://doi.org/10.5194/acpd-3-5237-2003

    Article  Google Scholar 

  • Houweling S, Baker D, Basu S, Boesch H, Butz A, Chevallier F, Deng F, Dlugokencky EJ, Feng L, Ganshin A, Hasekamp O (2015). An intercomparison of inverse models for estimating sources and sinks of CO2 using GOSAT measurements. J Geophys Res 120:5253–5266. https://doi.org/10.1002/2014JD022962

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309. https://doi.org/10.1016/0034-4257(88)90106-X

    Article  Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213. https://doi.org/10.1016/S0034-4257(02)00096-2

    Article  Google Scholar 

  • IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp

    Google Scholar 

  • IPCC (2019) Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds)]. In press

    Google Scholar 

  • Ito A, Oikawa T (2002) A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): A description based on dry-matter production theory and plot-scale validation. Ecol Model 151:143–176. https://doi.org/10.1016/S0304-3800(01)00473-2

    Article  Google Scholar 

  • Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc Lond B, Biol Sci 273(927):593–610. https://doi.org/10.1098/rstb.1976.0035

  • Jiang Z, Huete AR, Didan K, Miura T (2008) Development of a two-band enhanced vegetation index without a blue band. Remote Sens Environ 112(10):3833–3845. https://doi.org/10.1016/j.rse.2008.06.006

    Article  Google Scholar 

  • Joiner J, Guanter L, Lindstrot R, Voigt M, Vasilkov AP, Middleton EM, Huemmrich KF, Yoshida Y, Frankenberg C (2013) Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmos Meas Tech 6:2803–2823. https://doi.org/10.5194/amt-6-2803-2013

  • Jung M, Reichstein M, Margolis HA, Cescatti A, Richardson AD, Arain MA, Arneth A, Bernhofer C, Bonal D, Chen J, Gianelle D, Gobron N, Kiely G, Kutsch W, Lasslop G, Law BE, Lindroth A, Merbold L, Montagnani L, Moors EJ, Papale D, Sottocornola M, Vaccari F, Williams C (2011) Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J Geophys Res Biogeosci 116(3):2–4. https://doi.org/10.1029/2010JG001566

  • Kadygrov N, Maksyutov S, Eguchi N, Aoki T, Nakazawa T, Yokota T, Inoue G (2009) Role of simulated GOSAT total column CO2 observations in surface CO2 flux uncertainty reduction. J Geophys Res: Atmos 114(D21)

    Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press

    Google Scholar 

  • Kaminski T, Heimann M, Giering R (1999) A coarse grid three-dimensional global inverse model of the atmospheric transport 1. Adjoint model and Jacobian matrix. J Geophys Res Atmos 104(D15):18535–18553. https://doi.org/10.1029/1999JD900147

  • Kato T, Ito A, Kawamiya M (2009) Multiple temporal scale variability during the twentieth century in global carbon dynamics simulated by a coupled climate—terrestrial carbon cycle model. Clim Dyn 32:901–923. https://doi.org/10.1007/s00382-009-0548-1

    Article  Google Scholar 

  • Kattge J, Knorr W, Raddatz T, Wirth C (2009) Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob Change Biol 15:976–991. https://doi.org/10.1111/j.1365-2486.2008.01744.x

    Article  Google Scholar 

  • Klein Goldewijk K, Beusen A, Van Drecht G, De Vos M (2011) The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecol Biogeograp 20(1):73–86. https://doi.org/10.1111/j.1466-8238.2010.00587.x

  • Kljun N, Calanca P, Rotach MW, Schmid HP (2015) A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci Model Dev 8(11):3695–3713. https://doi.org/10.5194/gmd-8-3695-2015

    Article  Google Scholar 

  • Kluge M, Ting IP (2012) Crassulacean acid metabolism: analysis of an ecological adaptation, 30th edn. Springer, Berlin. https://doi.org/10.1007/978-3-642-67038-1

  • Knyazikhin Y, Martonchik JV, Myneni RB, Diner DJ, Running SW (1998) Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J Geophys Res Atmos 103:32257–32275. https://doi.org/10.1029/98JD02462

    Article  Google Scholar 

  • Köhler P, Frankenberg C, Magney TS, Guanter L, Joiner J, Landgraf J (2018) Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: first results and intersensor comparison to OCO-2. Geophys Res Lett 45(19):10456–10463. https://doi.org/10.1029/2018GL079031

    Article  Google Scholar 

  • Kormann R, Meixner FX (2001) An analytical footprint model for non-neutral stratification. Bound-Layer Meteorol 99(2):207–224. https://doi.org/10.1023/A:1018991015119

    Article  Google Scholar 

  • Kumar D, Scheiter S (2019) Biome diversity in South Asia—how can we improve vegetation models to understand global change impact at regional level? Sci Total Environ 671:1001–1016. https://doi.org/10.1016/j.scitotenv.2019.03.251

    Article  Google Scholar 

  • Kutsch WL, Bahn M, Heinemeyer A (2010) Soil carbon dynamics: an integrated methodology. https://doi.org/10.1017/CBO9780511711794

  • Langerwisch F, Vaclavik T, Von Bloh W, Vetter T, Thonicke K (2018) Combined effects of climate and land-use change on the provision of ecosystem services in rice agro-ecosystems. Environ Res Lett 13:015003. https://doi.org/10.1088/1748-9326/aa954d

    Article  Google Scholar 

  • Lasslop G, Reichstein M, Papale D, Richardson AD, Arneth A, Barr A, Stoy P, Wohlfahrt G (2010) Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach : critical issues and global evaluation. Global Change Biol 16(1):187–208. https://doi.org/10.1111/j.1365-2486.2009.02041.x

  • Law BE, Ryan MG, Anthoni PM (1999) Seasonal and annual respiration of a ponderosa pine ecosystem. Glob Change Biol 5(2):169–182

    Google Scholar 

  • Lawrence DM, Oleson KW, Flanner MG, Thornton PE, Swenson SC, Lawrence PJ, Slater AG (2011) Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. J Adv Model Earth Syst 3(1). https://doi.org/10.1029/2011ms000045

  • Lee X (2018) Fundamentals of boundary-layer meteorology. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-60853-2

  • Leuning R (1990) Modelling stomatal behaviour and and photosynthesis of Eucalyptus grandis. Funct Plant Biol 17(2):159–175. https://doi.org/10.1071/pp9900159

    Article  Google Scholar 

  • Levy PE, Cannell MGR, Friend AD (2004) Modelling the impact of future changes in climate, CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink. Global Environ Change 14:21–30. https://doi.org/10.1016/j.gloenvcha.2003.10.005

    Article  Google Scholar 

  • Liu J, Chen JM, Cihlar J, Park WM (1997) A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sens Environ 62:158–175. https://doi.org/10.1016/S0034-4257(97)00089-8

    Article  Google Scholar 

  • Liu J, Bowman KW, Lee M (2016) Comparison between the local ensemble transform kalman filter (LETKF) and 4D-Var in atmospheric CO2 flux inversion with the goddard earth observing system-chem model and the observation impact diagnostics from the LETKF. J Geophys Res 121:13066–13087. https://doi.org/10.1002/2016JD025100

    Article  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8(3):315. https://doi.org/10.2307/2389824

    Article  Google Scholar 

  • Macpherson JI, Grossman RL, Kelly RD (1992) Intercomparison results for FIFE flux aircraft. J Geophys Res 97(D17):18499–18514. https://doi.org/10.1029/92jd00272

    Article  Google Scholar 

  • Massman WJ, Lee X (2002) Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agric For Meteorol 113(1–4):121–144. https://doi.org/10.1016/S0168-1923(02)00105-3

    Article  Google Scholar 

  • Mauder M, Cuntz M, Drüe C, Graf A, Rebmann C, Schmid HP, Schmidt M, Steinbrecher R (2013) A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric For Meteorol 169:122–135. https://doi.org/10.1016/j.agrformet.2012.09.006

  • Meehl GA, Boer GJ, Covey C, Latif M, Stouffer RJ (2000) The coupled model intercomparison project (CMIP). Bull Am Meteor Soc 81(2):313–318. https://doi.org/10.1175/1520-0477(2000)081%3c0313:tcmipc%3e2.3.co;2

    Article  Google Scholar 

  • Meroni M, Rossini M, Guanter L, Alonso L, Rascher U, Colombo R, Moreno J (2009) Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications. Remote Sens Environ 113:2037–2051. https://doi.org/10.1016/j.rse.2009.05.003

    Article  Google Scholar 

  • Meyers TP, Hall ME, Lindberg SE, Kim K (1996) Use of the modified Bowen-ratio technique to measure fluxes of trace gases. Atmos Environ 30(19):3321–3329. https://doi.org/10.1016/1352-2310(96)00082-9

    Article  Google Scholar 

  • Milne R, Beverland IJ, Hargreaves K, Moncrieff JB (1999) Variation of the β coefficient in the relaxed eddy accumulation method. Bound-Layer Meteorol 93:221–225. https://doi.org/10.1023/A:1002061514948

    Article  Google Scholar 

  • Minx JC, Lamb WF, Callaghan MW, Fuss S, Hilaire J, Creutzig F, Amann T, Beringer T, de Oliveira Garcia W, Hartmann J, Khanna T, Lenzi D, Luderer G, Nemet GF, Rogelj J, Smith P, Vicente JLV, Wilcox J, Del Mar Zamora Dominguez M (2018) Negative emissions—Part 1: Research landscape and synthesis. Environ Res Lett 13:063001. https://doi.org/10.1088/1748-9326/aabf9b

  • Moffat AM, Papale D, Reichstein M, Hollinger DY, Richardson AD, Barr AG, Beckstein C, Braswell BH, Churkina G, Desai AR, Falge E (2007) Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agric For Meteorol 147(3):209–232. https://doi.org/10.1016/j.agrformet.2007.08.011

  • Mohammed GH, Colombo R, Middleton EM, Rascher U, van der Tol C, Nedbal L, Goulas Y, Pérez-Priego O, Damm A, Meroni M, Joiner J, Cogliati S, Verhoef W, Malenovský Z, Gastellu-Etchegorry J-P, Miller JR, Guanter L, Moreno J, Moya I, Berry JA, Frankenberg C, Zarco-Tejada PJ (2019) Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens Environ. https://doi.org/10.1016/j.rse.2019.04.030

  • Moncrieff JB, Massheder JM, De Bruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Søgaard H, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J Hydrol 188:589–611.

    Google Scholar 

  • Moncrieff J, Clement R, Finnigan J, Meyers T (2004) Averaging, detrending, and filtering of eddy covariance time series. In: Handbook of micrometeorology, pp 7–31. https://doi.org/10.1007/1-4020-2265-4_2

  • Monteith JL et al (1965) Evaporation and environment. In: Symposia of the society for experimental biology, vol 19, p 4

    Google Scholar 

  • Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9(3):747–766. https://doi.org/10.2307/2401901

    Article  Google Scholar 

  • Monteith JL (1977) Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 281(980), 277–294. https://doi.org/10.1098/rstb.1977.0140

  • Myles L, Meyers TP, Robinson L (2007) Relaxed eddy accumulation measurements of ammonia, nitric acid, sulfur dioxide and particulate sulfate dry deposition near Tampa, FL, USA. Environ Res Lett 2(3):034004. https://doi.org/10.1088/1748-9326/2/3/034004

    Article  Google Scholar 

  • Myneni RB, Knyazikhin Y, Privette JL, Running SW, Nemani R, Zhang Y, et al (1999) MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) product. Algorithm Theoretical Basis Document. https://eospso.gsfc.nasa.gov/atbd/modistables.html

  • Nalini K, Sijikumar S, Valsala V, Tiwari YK, Ramachandran R (2019) Designing surface CO2 monitoring network to constrain the Indian land fluxes. Atmos Environ 218:117003. https://doi.org/10.1016/j.atmosenv.2019.117003

    Article  Google Scholar 

  • Oechel WC, Vourlitis GL, Brooks S, Crawford TL, Dumas E (1998) Intercomparison among chamber, tower, and aircraft net CO2 and energy fluxes measured during the Arctic System Science Land-Atmosphere-Ice Interactions (ARCSS-LAII) Flux Study. J Geophys Res 103(D22):28993–29903. https://doi.org/10.1029/1998JD200015

    Article  Google Scholar 

  • Ohkubo S, Kosugi Y, Takanashi S, Mitani T, Tani M (2007) Comparison of the eddy covariance and automated closed chamber methods for evaluating nocturnal CO2 exchange in a Japanese cypress forest. Agric For Meteorol 142:50–65. https://doi.org/10.1016/j.agrformet.2006.11.004

    Article  Google Scholar 

  • Oleson KW, Lawrence DM, Bonan GB, Drewniak B (2013) Technical description of version 4.5 of the Community Land Model (CLM). https://doi.org/10.5065/D6RR1W7M

  • Pandey S, Houweling S, Krol M, Aben I, Chevallier F, Dlugokencky EJ, Gatti LV, Gloor E, Miller JB, Detmers R, Machida T, Röckmann T (2016) Inverse modeling of GOSAT-retrieved ratios of total column CH4 and CO2 for 2009 and 2010. Atmos Chem Phys 16:5043–5062. https://doi.org/10.5194/acp-16-5043-2016

  • Patel NR, Padalia H, Devadas R, Huete A, Senthil Kumar A, Krishna Murthy YVN (2018) Estimating net primary productivity of croplands in Indo-Gangetic Plains using GOME-2 sun-induced fluorescence and MODIS NDVI. Curr Sci 114(6):1333–1337. https://doi.org/10.18520/cs/v114/i06/1333-1337

  • Patra PK, Niwa Y, Schuck TJ, Brenninkmeijer CAM, MacHida T, Matsueda H, Sawa Y (2011) Carbon balance of South Asia constrained by passenger aircraft CO2 measurements. Atmos Chem Phys 11(9):4163–4175. https://doi.org/10.5194/acp-11-4163-2011

    Article  Google Scholar 

  • Patra PK, Canadell JG, Houghton RA, Piao SL, Oh NH, Ciais P, Manjunath KR, Chhabra A, Wang T, Bhattacharya T, Bousquet P, Hartman J, Ito A, Mayorga E, Niwa Y, Raymond PA, Sarma VVSS, Lasco R (2013) The carbon budget of South Asia. Biogeosciences 10(1):513–527. https://doi.org/10.5194/bg-10-513-2013

  • Pattey E, Desjardins RL, Rochette P (1993) Accuracy of the relaxed eddy-accumulation technique, evaluated using CO2 flux measurements. Bound-Layer Meteorol 66:341–355. https://doi.org/10.1007/BF00712728

    Article  Google Scholar 

  • Paw UKT, Baldocchi DD, Meyers TP, Wilson KB (2000) Correction of eddy-covariance measurements incorporating both advective effects and density fluxes. Bound-Layer Meteorol 97:487–511. https://doi.org/10.1023/A:1002786702909

  • Peters W, Jacobson AR, Sweeney C, Andrews AE, Conway TJ, Masarie K, Miller JB, Bruhwiler LMP, Petron G, Hirsch AI, Worthy DEJ, van der Werf GR, Randerson JT, Wennberg PO, Krol MC, Tans PP (2007) An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc Natl Acad Sci U S A 104(48):18925–18930. https://doi.org/10.1073/pnas.0708986104

  • Peylin P, Law RM, Gurney KR, Chevallier F, Jacobson AR, Maki T, Niwa Y, Patra PK, Peters W, Rayner PJ, Rödenbeck C, van der Laan-Luijkx IT, Zhang X (2013) Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10:6699–6720. https://doi.org/10.5194/bg-10-6699-2013

  • Pickett-Heaps CA, Rayner PJ, Law RM, Ciais P, Patra PK, Bousquet P, Peylin P, Maksyutov S, Marshall J, Rödenbeck C, Langenfelds RL, Steele LP, Francey RJ, Tans P, Sweeney C (2011) Atmospheric CO2 inversion validation using vertical profile measurements: analysis of four independent inversion models. J Geophys Res Atmos 116(D12305):1–17. https://doi.org/10.1029/2010JD014887

  • Pillai D, Gerbig C, Kretschmer R, Beck V, Karstens U, Neininger B, Heimann M (2012) Comparing Lagrangian and Eulerian models for CO2 transport-a step towards Bayesian inverse modeling using WRF/STILT-VPRM. Atmos Chem Phys 12:8979–8991. https://doi.org/10.5194/acp-12-8979-2012

    Article  Google Scholar 

  • Pirk N, Sievers J, Mertes J, Parmentier FJW, Mastepanov M, Christensen TR (2017) Spatial variability of CO2 uptake in polygonal tundra: Assessing low-frequency disturbances in eddy covariance flux estimates. Biogeosciences 14(12):3157–3169. https://doi.org/10.5194/bg-14-3157-2017

    Article  Google Scholar 

  • Pisso I, Patra P, Takigawa M, Machida T, Matsueda H, Sawa Y (2019) Assessing Lagrangian inverse modelling of urban anthropogenic CO2 fluxes using in situ aircraft and ground-based measurements in the Tokyo area. Carbon Balance Manage 14(6):1–23. https://doi.org/10.1186/s13021-019-0118-8

    Article  Google Scholar 

  • Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993) Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem Cycles 7(4):811–841. https://doi.org/10.1029/93GB02725

    Article  Google Scholar 

  • Poulter B, Ciais P, Hodson E, Lischke H, Maignan F, Plummer S, Zimmermann NE (2011) Plant functional type mapping for earth system models. Geosci Model Dev 4:993–1010. https://doi.org/10.5194/gmd-4-993-2011

    Article  Google Scholar 

  • Prentice IC, Cowling SA (2013). Dynamic global vegetation models. In: Encyclopedia of biodiversity: Second Edition. https://doi.org/10.1016/B978-0-12-384719-5.00412-3

  • Prentice I, Farquhar G, Fasham, M. (2001). The carbon cycle and atmospheric carbon dioxide. In: Climate change 2001: the scientific basis. https://doi.org/10.1256/004316502320517344

  • Prince SD, Goward SN (1995) Global primary production: a remote sensing approach. J Biogeogr 22(4):815–835

    Article  Google Scholar 

  • Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochem Cycles 13(4):997–1027. https://doi.org/10.1029/1999GB900046

    Article  Google Scholar 

  • Raymond Hunt E (1994) Relationship between woody biomass and PAR conversion efficiency for estimating net primary production from NDVI. Int J Remote Sens 15(8):1725–1729. https://doi.org/10.1080/01431169408954203

    Article  Google Scholar 

  • Rayner PJ, Law RM, O’Brien DM, Butler TM, Dilley AC (2002) Global observations of the carbon budget 3. Initial assessment of the impact of satellite orbit, scan geometry, and cloud on measuring CO2 from space. J Geophys Res Atmos 107(D21):4557. https://doi.org/10.1029/2001JD000618

  • Rayner PJ, Scholze M, Knorr W, Kaminski T, Giering R, Widmann H (2005) Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS). Global Biogeochem Cycles 19:GB2026. https://doi.org/10.1029/2004GB002254

  • Rebmann C, Aubinet M, Schmid H, Arriga N, Aurela M, Burba, G., Clement R, De Ligne A, Fratini G, Gielen B, Grace J, Graf A, Gross P, Haapanala S, Herbst M, Hörtnagl L, Ibrom A, Joly L, Kljun N, Kolle O, Kowalski A, Lindroth A, Loustau D, Mammarella I, Mauder M, Merbold L, Metzger S, Mölder M, Montagnani L, Papale D, Pavelka M, Peichl M, Roland M, Serrano-Ortiz P, Siebicke L, Steinbrecher R, Tuovinen J-P, Vesala T, Wohlfahrt G, Franz D (2018) ICOS eddy covariance flux-station site setup: a review. Int Agrophys 32(4):471–494. https://doi.org/10.1515/intag-2017-0044

  • Reichstein M (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11:1–16

    Article  Google Scholar 

  • Reynolds O (1895) IV. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos Trans R Soc Lond A 186:123–164. https://doi.org/10.1098/rsta.1895.0004

  • Rinne HJI, Guenther AB, Warneke C, De Gouw JA, Luxembourg SL (2001) Disjunct eddy covariance technique for trace gas flux measurements. Geophys Res Lett 28:3139–3142. https://doi.org/10.1029/2001GL012900

    Article  Google Scholar 

  • Running SW, Hunt ER (1993) Generalization of a Forest Ecosystem Process Model for Other Biomes, BIOME-BGC, and an Application for Global-Scale Models. Scal Physiol Process. https://doi.org/10.1016/b978-0-12-233440-5.50014-2

    Article  Google Scholar 

  • Running SW, Investigator P, Nemani R, Investigator A, Glassy JM, Engineer S, Thornton PE (1999) Modis daily photosynthesis (PSN) and annual net primary production (NPP) product. Algorithm theoretical basis Document

    Google Scholar 

  • Ryan MG (1991) Effects of climate change on plant respiration. Ecol Appl 1(2):157–167. https://doi.org/10.2307/1941808

    Article  Google Scholar 

  • Schuh AE, Jacobson AR, Basu S, Weir B, Baker D, Bowman K, Chevallier F, Crowell S, Davis KJ, Deng F, Denning S, Feng L, Jones D, Liu J, Palmer PI (2019) Quantifying the impact of atmospheric transport uncertainty on CO2 surface flux estimates. Global Biogeochem Cycles 33:484–500. https://doi.org/10.1029/2018GB006086

  • Sellers PJ, Berry JA, Collatz GJ, Field CB, Hall FG (1992) Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens Environ 42(3):187–216. https://doi.org/10.1016/0034-4257(92)90102-P

  • Sims DA, Rahman AF, Cordova VD, El-Masri BZ, Baldocchi DD, Bolstad PV, Flanagan L, Goldstein A, Hollinger D, Xu L (2008) A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sens Environ 112:1633–1646. https://doi.org/10.1016/j.rse.2007.08.004

  • Siqueira M, Lai CT, Katul G (2000) Estimating scalar sources, sinks, and fluxes in a forest canopy using Lagrangian, Eulerian, and hybrid inverse models. J Geophys Res Atmos 105(D24):29475–29488. https://doi.org/10.1029/2000JD900543

    Article  Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol 9:161–185. https://doi.org/10.1046/j.1365-2486.2003.00569.x

  • Skaggs TH, Anderson RG, Alfieri JG, Scanlon TM, Kustas WP (2018) Fluxpart: open source software for partitioning carbon dioxide and water vapor fluxes. Agric For Meteorol 253–254:218–224. https://doi.org/10.1016/j.agrformet.2018.02.019

    Article  Google Scholar 

  • Stewart JB (1988) Modelling surface conductance of pine forest. Agric For Meteorol 43(1):19–35. https://doi.org/10.1016/0168-1923(88)90003-2

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3027-8

  • Sun Y, Frankenberg C, Wood JD, Schimel DS, Jung M, Guanter L, Drewry DT, Verma M, Porcar-Castell A, Griffis TJ, Gu L, Magney TS, Köhler P, Evans B, Yuen K (2017) OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358(6360):eaam5747. https://doi.org/10.1126/science.aam5747

  • Thornton PE, Rosenbloom NA (2005) Ecosystem model spin-up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecol Model 189:25–48. https://doi.org/10.1016/j.ecolmodel.2005.04.008

    Article  Google Scholar 

  • Tramontana G, Jung M, Schwalm CR, Ichii K, Camps-Valls G, Ráduly B., Reichstein M, Altaf Arain M, Cescatti A, Kiely G, Merbold L, Serrano-Ortiz P, Sickert S, Wolf S, Papale D (2016) Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 13:4291–4313. https://doi.org/10.5194/bg-13-4291-2016

  • Turner DP, Ritts WD, Cohen WB, Gower ST, Running SW, Zhao M, Costa MH, Kirschbaum AA, Ham JM, Saleska SR, Ahl DE (2006) Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens Environ 102:282–292. https://doi.org/10.1016/j.rse.2006.02.017

  • Tuzet A, Perrier A, Leuning R (2003) A coupled model of stomatal conductance, photosynthesis and transpiration. Plant, Cell Environ 26:1097–1116. https://doi.org/10.1046/j.1365-3040.2003.01035.x

    Article  Google Scholar 

  • Valentini R, Greco S, Seufert G, Bertin N, Ciccioli P, Cecinato A, Brancaleoni E, Frattoni M (1997) Fluxes of biogenic VOC from Mediterranean vegetation by trap enrichment relaxed eddy accumulation. Atmos Environ 31:229–238. https://doi.org/10.1016/S1352-2310(97)00085-X

  • Valsala V, Tiwari YK, Pillai P, Roxy M, Maksyutov S, Murtugudde R (2013) Intraseasonal variability of terrestrial biospheric CO2 fluxes over India during summer monsoons. J Geophys Res Biogeosci 118(2):752–769. https://doi.org/10.1002/jgrg.20037

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Oceanic Technol 14:512–526. https://doi.org/10.1175/1520-0426(1997)014%3c0512:QCAFSP%3e2.0.CO;2

    Article  Google Scholar 

  • Vidal J, Chollet R (1997) Regulatory phosphorylation of C4 PEP carboxylase. Trends Plant Sci 2(6):230–237. https://doi.org/10.1016/S1360-1385(97)89548-9

    Article  Google Scholar 

  • Wagle P, Zhang Y, Jin C, Xiao X (2016) Comparison of solar-induced chlorophyll fluorescence, light-use efficiency, and process-based GPP models in maize. Ecol Appl 26(4):1211–1222. https://doi.org/10.1890/15-1434

    Article  Google Scholar 

  • Wang M, Guan DX, Han SJ, Wu JL (2010) Comparison of eddy covariance and chamber-based methods for measuring CO2 flux in a temperate mixed forest. Tree Physiol 30:149–163. https://doi.org/10.1093/treephys/tpp098

    Article  Google Scholar 

  • Watson DJ (1947) Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Ann Botany 11(41):41–76. https://doi.org/10.1093/oxfordjournals.aob.a083148

  • Whitley R, Zeppel M, Armstrong N, Macinnis-Ng C, Yunusa I, Eamus D (2008) A modified Jarvis-Stewart model for predicting stand-scale transpiration of an Australian native forest. Plant Soil 305:35–47. https://doi.org/10.1007/s11104-007-9399-x

    Article  Google Scholar 

  • Williams M, Rastetter EB, Fernandes DN, Goulden ML (1996) Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulics. Plant, Cell Environ 19:911–927. https://doi.org/10.1111/j.1365-3040.1996.tb00456.x

    Article  Google Scholar 

  • Wolanin A, Rozanov VV, Dinter T, Noël S, Vountas M, Burrows JP, Bracher A (2015) Global retrieval of marine and terrestrial chlorophyll fluorescence at its red peak using hyperspectral top of atmosphere radiance measurements: Feasibility study and first results. Remote Sens Environ 166:243–261. https://doi.org/10.1016/j.rse.2015.05.018

    Article  Google Scholar 

  • Wutzler T, Lucas-Moffat A, Migliavacca M, Knauer J, Sickel K, Šigut L, Menzer O, Reichstein M (2018) Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 15(16):5015–5030. https://doi.org/10.5194/bg-15-5015-2018

  • Xiao X, Hollinger D, Aber J, Goltz M, Davidson EA, Zhang Q, Moore B (2004) Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens Environ 89:519–534. https://doi.org/10.1016/j.rse.2003.11.008

    Article  Google Scholar 

  • Yan M, Tian X, Li Z, Chen E, Li C, Fan W (2016) A long-term simulation of forest carbon fluxes over the Qilian Mountains. Int J Appl Earth Obs Geoinf 52:512–526. https://doi.org/10.1016/j.jag.2016.07.009

    Article  Google Scholar 

  • Ye ZP, Yu Q (2008) A coupled model of stomatal conductance and photosynthesis for winter wheat. Photosynthetica 46(4):637–640. https://doi.org/10.1007/s11099-008-0110-0

    Article  Google Scholar 

  • Yu D, Shi P, Shao H, Zhu W, Pan Y (2009) Modelling net primary productivity of terrestrial ecosystems in East Asia based on an improved CASA ecosystem model. Int J Remote Sens 30(18):4851–4866. https://doi.org/10.1080/01431160802680552

    Article  Google Scholar 

  • Zarco-Tejada PJ, Morales A, Testi L, Villalobos FJ (2013) Spatio-temporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance. Remote Sens Environ 133:102–115. https://doi.org/10.1016/j.rse.2013.02.003

    Article  Google Scholar 

  • Zeng X, Shajkh M, Dai Y, Dickinson RE, Myneni R (2002) Coupling of the common land model to the NCAR community climate model. J Clim 15:1832–1854. https://doi.org/10.1175/1520-0442(2002)015%3c1832:COTCLM%3e2.0.CO;2

    Article  Google Scholar 

  • Zhang Y, Xu M, Chen H, Adams J (2009) Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. Glob Ecol Biogeogr 18:280–290. https://doi.org/10.1111/j.1466-8238.2008.00442.x

    Article  Google Scholar 

  • Zhang Y, Guanter L, Berry JA, Joiner J, van der Tol C, Huete A, Gitelson A, Voigt M, Köhler P (2014) Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models. Global Change Biol 20:3727–3742. https://doi.org/10.1111/gcb.12664

  • Zhao M, Heinsch FA, Nemani RR, Running SW (2005) Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ 95:164–176. https://doi.org/10.1016/j.rse.2004.12.011

    Article  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge the constant encouragement and support by the Director, Indian Institute of Tropical Meteorology (IITM), Pune. The IITM is an autonomous institute of the Ministry of Earth Sciences (MoES), the Government of India. I thank Supriyo Chakraborty and other colleagues of the MetFlux India team for all possible helps. I also take this opportunity to thank Vinod Kumar Gaur, Martin Heimann, Philippe Ciais, Marc Aubinet, Fortunat Joos, George Burba, KT Paw U, Hartmut Bösch, Paul Palmer, Christof Ammann, Atul K. Jain, Prabir K. Patra, Bimal K. Bhattacharya, Grant Allen, Eiko Nemitz, Somnath Baidya Roy and Sabine Fuss for the valuable discussions I had with them during different scientific meetings at different stages of my career.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramit Kumar Deb Burman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deb Burman, P.K. (2021). Estimation of Net Primary Productivity: An Introduction to Different Approaches. In: Shit, P.K., Pourghasemi, H.R., Das, P., Bhunia, G.S. (eds) Spatial Modeling in Forest Resources Management . Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-56542-8_2

Download citation

Publish with us

Policies and ethics