Skip to main content

Forest Fire Risk Assessment for Effective Geoenvironmental Planning and Management using Geospatial Techniques

  • Chapter
  • First Online:
Spatial Modeling in Forest Resources Management

Part of the book series: Environmental Science and Engineering ((ESE))

  • 679 Accesses

Abstract

Forest are essential natural resources having the role of supporting economic activity, which plays a significant role in regulating the climate and the carbon cycle. Forest ecosystems increasingly threatened by fires caused by a range of natural and anthropogenic factors. Hence, spatial assessment of fire risk is critical to reducing the impacts of wildland fires. In the current research, the evaluation of forest fire risk (FFR) assessment performed by geospatial data of Melgaht Tiger Reserve Forest (MTRS), Maharashtra, India. We have used eleven natural and anthropogenic parameters (slope, altitude, topographic position index (TPI), aspect, rainfall, land surface temperature (LST), air temperature, wind speed, normalized differential vegetation index (NDVI), distance to road and distance to settlement) for FFR assessment based on the Analytic hierarchy process (AHP) and Frequency ratio (FR) models in a GIS framework. The results from AHP and FR models shown similar trends. The AHP model was significantly higher accuracy than the FR model. AHP and FR models based FHR maps were classified into five classes (very low, low, moderate, high, and very high). According to the generated FFR maps, the very high-risk class was found at some forest blocks (Mangtya, Kund, Gudfata, Katharmal, Amyar). The sensitivity analysis showed that some parameters (wind speed, air temperature, LST, slope, altitude, distance to settlement, and distance to the road) were more sensitive to forest fire risk. The FFR results were justified by the forest fire sample points (Forest Survey of India) and burn images (2010–2018). This work will provide a basic guideline for effective geo-environmental planning and management of Melgaht Tiger Reserve Forest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chen C, Xu Z (2010) Forest ecosystem responses to environmental changes: the key regulatory role of biogeochemical cycling, pp 210–214

    Google Scholar 

  • Choi J, Oh HJ, Lee HJ, Lee C, Lee S (2012) Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Eng Geol 124:12–23

    Article  Google Scholar 

  • Cortez P, Morais ADJR (2007) A data mining approach to predict forest fires using meteorological data

    Google Scholar 

  • Krivtsov V, Vigy O, Legg C, Curt T, Rigolot E, Lecomte I, Pezzatti GB (2009) Fuel modelling in terrestrial ecosystems: an overview in the context of the development of an object-orientated database for wild fire analysis. Ecol Model 220(21):2915–2926

    Article  Google Scholar 

  • Mohammady M, Pourghasemi HR, Pradhan B (2012) Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence models. J Asian Earth Sci 61:221–236

    Article  Google Scholar 

  • Motazeh AG, Ashtiani EF, Baniasadi R, Choobar FM (2013) Rating and mapping fire hazard in the hardwood Hyrcanian forests using GIS and expert choice software. Acknowledgement to reviewers of the manuscripts submitted to Forestry Ideas in 2013, p 141

    Google Scholar 

  • Pourghasemi HR, Beheshtirad M, Pradhan B (2016) A comparative assessment of prediction capabilities of modified analytical hierarchy process (M-AHP) and Mamdani fuzzy logic models using Netcad-GIS for forest fire susceptibility mapping. Geomat Nat Hazards Risk 7(2):861–885

    Article  Google Scholar 

  • Prasad VK, Badarinath KVS, Eaturu A (2008) Biophysical and anthropogenic controls of forest fires in the Deccan Plateau, India. J Environ Manage 86(1):1–13

    Google Scholar 

  • Rawat GS (2003) Fire risk assessment for forest fire control management in Chilla Forest Range of Rajaji National Park, Uttaranchal, India. ITC

    Google Scholar 

  • Roy PS (2003) Forest fire and degradation assessment using satellite remote sensing and geographic information system. Satellite Remote sensing and GIS applications in agricultural meteorology, p 361

    Google Scholar 

  • Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83–98

    Google Scholar 

  • Sharma LK, Kanga S, Nathawat MS, Sinha S, Pandey PC (2012) Fuzzy AHP for forest fire risk modeling. Disast Prevent Manag Int J

    Google Scholar 

  • Vargas LG (1990) An overview of the analytic hierarchy process and its applications. Eur J Oper Res 48(1):2–8

    Article  Google Scholar 

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. CATENA 72(1):1–12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayan Kayet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kayet, N. (2021). Forest Fire Risk Assessment for Effective Geoenvironmental Planning and Management using Geospatial Techniques. In: Shit, P.K., Pourghasemi, H.R., Das, P., Bhunia, G.S. (eds) Spatial Modeling in Forest Resources Management . Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-56542-8_12

Download citation

Publish with us

Policies and ethics