Skip to main content

Forest Health Monitoring using Hyperspectral Remote Sensing Techniques

  • Chapter
  • First Online:
Spatial Modeling in Forest Resources Management

Part of the book series: Environmental Science and Engineering ((ESE))

Abstract

Hyperspectral Remote sensing is a handy tool for forest health monitoring. This study focuses on forest health monitoring using hyperspectral satellite data and validates it with tree spectral data. In the study area, increasing mining and anthropogenic activities within and near forest lands have caused threats to forest health. All these necessitate assessing the forest health in the areas surrounding mines. We have used two methods for the forest health assessment: one is VIs (vegetation indices) based model, and another is tree spectral analysis. The supervised classification (SAM) method was used for forest health classification based on spectral data. The results showed that a healthy forest portion was located in the hilly side of the study area while an unhealthy segment was situated alongside the mines. Hyperion data-based VIs model shows better accuracy than spectral based other methods. Also, it was found that the hyperspectral data based forest health classification gave a higher accuracy than multispectral data. Finally, forest health results were justified by ground tree spectral data. This work provides an effective guideline for forest planning and management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam E, Mutanga O, Rugege D (2010) Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecol Manage 18(3):281–296

    Article  Google Scholar 

  • Apostolescu N, Baran D (2016) Spectral similarity in hyperspectral image. Acta Electrotehnica 57

    Google Scholar 

  • Asner GP, Ustin SL, Townsend PA, Martin RE, Chadwick KD (2015) Forest biophysical and biochemical properties from hyperspectral and LiDAR remote sensing. Land resources monitoring, modeling and mapping with remote sensing. CRC Press, Taylor & Francis Group, pp 429–448.

    Google Scholar 

  • Bellvert J, Zarco-Tejada PJ, Girona J, Fereres EJPA (2014) Mapping crop water stress index in a ‘Pinot-noir’vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precision Agric 15(4):361–376

    Article  Google Scholar 

  • Boardman JW (1995) Analysis, understanding, and visualization of hyperspectral data as convex sets in n space. In: Imaging spectrometry (vol 2480). International Society for Optics and Photonics, pp 14–22

    Google Scholar 

  • Brantley ST, Zinnert JC, Young DR (2011) Application of hyperspectral vegetation indices to detect variations in high leaf area index temperate shrub thicket canopies. Remote Sens Environ 115(2):514–523

    Article  Google Scholar 

  • Broge NH, Leblanc E (2001) Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens Environ 76(2):156–172

    Article  Google Scholar 

  • Calderón R, Navas-Cortés JA, Lucena C, Zarco-Tejada PJ (2013) High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens Environ 139:231–245

    Article  Google Scholar 

  • Chambers JQ, Asner GP, Morton DC, Anderson L, O, Saatchi SS, Espírito-Santo FD, Souza, C Jr. (2007) Regional ecosystem structure and function: ecological insights from remote sensing of tropical forests. Trends Ecol Evolut 22(8):414–423

    Google Scholar 

  • Chang CI, Plaza A (2006) A fast iterative algorithm for implementation of pixel purity index. IEEE Geosci Remote Sens Lett 3(1):63–67

    Article  Google Scholar 

  • Chaudhry F, Wu CC, Liu W, Chang CI, Plaza A (2006) Pixel purity index-based algorithms for endmember extraction from hyperspectral imagery. Recent Adv Hyperspect Signal Image Process 37(2):29–62

    Google Scholar 

  • Cho MA, Sobhan I, Skidmore AK, De Leeuw J (2008) Discriminating species using hyperspectral indices at leaf and canopy scales. The International Archives of the Spatial Information Sciences, pp 369–376

    Google Scholar 

  • Colombo R, Meroni M, Marchesi A, Busetto L, Rossini M, Giardino C, Panigada C (2008) Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modeling. Remote Sens Environ 112(4):1820–1834

    Article  Google Scholar 

  • Cooley T, Anderson GP, Felde GW, Hoke ML, Ratkowski AJ, Chetwynd JH, Bernstein LS (2002, June) FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In: IEEE International Geoscience and Remote Sensing Symposium, Vol 3. IEEE, pp 1414–1418

    Google Scholar 

  • Dalponte M, Ørka HO, Ene LT, Gobakken T, Næsset E (2014) Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data. Remote Sens Environ 140:306–317

    Article  Google Scholar 

  • Datt B (1999) Remote sensing of water content in Eucalyptus leaves. Aust J Bot 47(6):909–923

    Google Scholar 

  • Darvishzadeh R, Atzberger C, Skidmore A, Schlerf M (2011) Mapping grassland leaf area index with airborne hyperspectral imagery: a comparison study of statistical approaches and inversion of radiative transfer models. ISPRS J Photogram Remote Sens 66(6):894–906

    Article  Google Scholar 

  • Darvishzadeh R, Skidmore A, Schlerf M, Atzberger C, Corsi F, Cho M (2008) LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS J Photogram Remote Sens 63(4):409–426

    Article  Google Scholar 

  • Denghui Z, Le Y (2011) Support vector machine based classification for hyperspectral remote sensing images after minimum noise fraction rotation transformation. In: 2011 International conference on internet computing and information services. IEEE, pp 132–135

    Google Scholar 

  • Franklin SE (2001) Remote sensing for sustainable forest management. CRC press

    Google Scholar 

  • Gamon JA, Surfus JS (1999) Assessing leaf pigment content and activity with a reflectometer. The New Phytol 143(1):105–117

    Article  Google Scholar 

  • Gamon JA, Huemmrich KF, Peddle DR, Chen J, Fuentes D, Hall FG, Miller JR (2004) Remote sensing in BOREAS: Lessons learned. Remote Sens Environ 89(2):139–162

    Google Scholar 

  • George R, Padalia H, Kushwaha SPS (2014) Forest tree species discrimination in western Himalaya using EO-1 Hyperion. Int J Appl Earth Obs Geoinf 28:140–149

    Google Scholar 

  • Girouard G, Bannari A, El Harti A, Desrochers A (2004) Validated spectral angle mapper algorithm for geological mapping: comparative study between QuickBird and landsat-TM. In: XXth ISPRS congress, geo-imagery bridging continents, Istanbul, Turkey, pp 12–23

    Google Scholar 

  • Gitelson AA, Stark R, Grits U, Rundquist D, Kaufman Y, Derry D (2002) Vegetation and soil lines in visible spectral space: a concept and technique for remote estimation of vegetation fraction. Int J Remote Sens 23(13):2537–2562

    Google Scholar 

  • Han T, Goodenough DG, Dyk A, Love J (2002) Detection and correction of abnormal pixels in Hyperion images. In: IEEE international geoscience and remote sensing symposium, vol 3. IEEE, pp 1327–1330

    Google Scholar 

  • Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada PJ, Asner GP, Ustin SL (2009) PROSPECT+ SAIL models: a review of use for vegetation characterization. Remote Sens Environ 113:S56–S66

    Article  Google Scholar 

  • Jenkins JP, Richardson AD, Braswell BH, Ollinger SV, Hollinger DY, Smith ML (2007) Refining light-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements. Agric Meteorol 143(1–2):64–79

    Article  Google Scholar 

  • Kayet N, Pathak K, Chakrabarty A, Sahoo S (2016) Spatial impact of land use/land cover change on surface temperature distribution in Saranda Forest Jharkhand. Model Earth Syst Environ 2(3):127

    Article  Google Scholar 

  • Kayet N, Pathak K, Chakrabarty A, Singh CP, Chowdary VM, Kumar S, Sahoo S (2019) Forest health assessment for geo-environmental planning and management in hilltop mining areas using Hyperion and Landsat data. Ecol Ind 106:105471

    Article  Google Scholar 

  • Kayet N, Pathak K, Chakrabarty A, Kumar S, Chowdary VM, Singh CP, Basumatary S (2019) Assessment of foliar dust using hyperion and landsat satellite imagery for mine environmental monitoring in an open cast iron ore mining areas. J Clean Product 218:993–1006

    Google Scholar 

  • Ke LIU, Qing-bo ZHOU, Wen-bin WU, Tian XIA, Hua-jun TANG (2016) Estimating the crop leaf area index using hyperspectral remote sensing. J integrative agriculture 15(2):475–491

    Google Scholar 

  • Kruse FA, Boardman JW, Huntington JF (1999) Fifteen years of hyperspectral data: Northern grapevine mountains, Nevada. In: Proceedings of the 8th JPL Airborne earth science workshop: Jet Propulsion Laboratory Publication, JPL Publication, pp 99–117

    Google Scholar 

  • Kumar K, Singh NM, Kerr JM (2015) Decentralisation and democratic forest reforms in India: moving to a rights-based approach. Forest Policy Econ 51:1–8

    Article  Google Scholar 

  • Lee KS, Cohen WB, Kennedy RE, Maiersperger TK, Gower ST (2004) Hyperspectral versus multispectral data for estimating leaf area index in four different biomes. Remote Sens Environ 91(3–4):508–520

    Article  Google Scholar 

  • Li Z, Guo X (2016) Remote sensing of terrestrial non-photosynthetic vegetation using hyperspectral, multispectral, SAR, and LiDAR data. Prog Phys Geogr 40(2):276–304

    Article  Google Scholar 

  • Lloret F, Peñuelas J, Ogaya R (2004) Establishment of co-existing Mediterranean tree species under a varying soil moisture regime. J Veg Sci 15(2):237–244

    Article  Google Scholar 

  • Ma J, Sun DW, Qu JH, Pu H (2017) Prediction of textural changes in grass carp fillets as affected by vacuum freeze drying using hyperspectral imaging based on integrated group wavelengths. LWT-Food Sci Technol 82:377–385

    Article  Google Scholar 

  • Mashimbye ZE, Cho MA, Nell JP, De Clercq WP, Van Niekerk A, Turner DP (2012) Model-based integrated methods for quantitative estimation of soil salinity from hyperspectral remote sensing data: a case study of selected South African soils. Pedosphere 22(5):640–649

    Article  Google Scholar 

  • Navinkumar TU, Parmar SK (2016) Unmixing of hyperpectral image using nonlinear parametric model. In: 2016 IEEE international conference on recent trends in electronics, information & communication technology (RTEICT), IEEE, pp 1206–1211

    Google Scholar 

  • Pathak VN (2016) Development of an atmospheric correction method for retrieval of surface reflectance from satellite data. Doctoral dissertation, Sardar Patel University

    Google Scholar 

  • Peddle DR, Boulton RB, Pilger N, Bergeron M, Hollinger A (2008) Hyperspectral detection of chemical vegetation stress: evaluation for the Canadian HERO satellite mission. Can J Remote Sens 34(sup1):S198–S216

    Article  Google Scholar 

  • Petropoulos GP, Vadrevu KP, Kalaitzidis C (2013) Spectral angle mapper and object-based classification combined with hyperspectral remote sensing imagery for obtaining land use/cover mapping in a Mediterranean region. Geocarto Int 28(2):114–129

    Article  Google Scholar 

  • Plaza A, Valencia D, Plaza J, Chang CI (2006) Parallel implementation of endmember extraction algorithms from hyperspectral data. IEEE Geosci Remote Sens Lett 3(3):334–338

    Article  Google Scholar 

  • Rodríguez-Pérez JR, Riaño D, Carlisle E, Ustin S, Smart DR (2007) Evaluation of hyperspectral reflectance indexes to detect grapevine water status in vineyards. Am J Enology and Viticulture 58(3):302–317

    Google Scholar 

  • Serrano L, Penuelas J, Ustin SL (2002) Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: decomposing biochemical from structural signals. Remote Sens Environ 81(2-3):355–364

    Google Scholar 

  • Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81(2-3):337–354

    Google Scholar 

  • Thenkabail PS (2001) Optimal hyperspectral narrow bands for discriminating agricultural crops. Remote Sens Rev 20(4):257–291

    Article  Google Scholar 

  • Thenkabail PS, Enclona EA, Ashton MS, Van Der Meer B (2004) Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sens Environ 91(3-4):354–376

    Google Scholar 

  • Tuominen J, Lipping T, Kuosmanen V (2008) Assesment of ENVI forest health tool in detection of dust and seepage contaminated forest areas. In: IGARSS 2008–2008 IEEE international geoscience and remote sensing symposium, Vol 3. IEEE, pp. III–1358

    Google Scholar 

  • Tuominen J, Lipping T, Kuosmanen V, Haapanen R (2009) Remote sensing of forest health. In: Ho P-GP (ed) Geoscience and remote sensing. InTech, Shanghai, China, pp 29–52

    Google Scholar 

  • Vauhkonen J, Mehtätalo L, Packalén P (2011) Combining tree height samples produced by airborne laser scanning and stand management records to estimate plot volume in Eucalyptus plantations. Can J Res 41(8):1649–1658

    Article  Google Scholar 

  • Wang W, Lawrence KC, Ni X, Yoon SC, Heitschmidt GW, Feldner P (2015) Near-infrared hyperspectral imaging for detecting Aflatoxin B1 of maize kernels. Food Control 51:347–355

    Article  Google Scholar 

  • Wilson JW (1981) Analysis of growth, photosynthesis and light interception for single plants and stands. Ann Bot 48(4):507–512

    Article  Google Scholar 

  • Zarco-Tejada PJ, Berni JA, Suárez L, Sepulcre-Cantó G, Morales F, Miller JR (2009) Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection. Remote Sens Environ 113(6):1262–1275

    Article  Google Scholar 

  • Zarco-Tejada PJ, Guillén-Climent ML, Hernández-Clemente R, Catalina A, González MR, Martín P (2013) Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV). Agric for Meteorol 171:281–294

    Article  Google Scholar 

  • Zarco-Tejada PJ, Miller JR, Mohammed GH, Noland TL, Sampson PH (2002) Vegetation stress detection through chlorophyll a+ b estimation and fluorescence effects on hyperspectral imagery. J Environ Qual 31(5):1433–1441

    Article  Google Scholar 

  • Zarco-Tejada PJ, Ustin SL, Whiting ML (2005) Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery. Agron J 97(3):641–653

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayan Kayet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kayet, N. (2021). Forest Health Monitoring using Hyperspectral Remote Sensing Techniques. In: Shit, P.K., Pourghasemi, H.R., Das, P., Bhunia, G.S. (eds) Spatial Modeling in Forest Resources Management . Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-56542-8_10

Download citation

Publish with us

Policies and ethics