Skip to main content

Forest Management with Advance Geoscience: Future Prospects

  • Chapter
  • First Online:
Spatial Modeling in Forest Resources Management

Part of the book series: Environmental Science and Engineering ((ESE))

Abstract

The creation and implementation, involving key stakeholders, of context-specific forest management practices plays a significant role in the achievements of sustainable forest management. A number of site-growth modelling studies have been funded in recent years with the goal of developing quantitative relations between the site Index and specific biophysical indicators. With considerable time period, the role of forests in meeting the requirements for minor resources and ecological services has been recognized beyond the mere supply of forest. Present chapter describes advance geoscience application in forest management and also suggesting present research work to be adopted in future forest management plan. Counter-measures and recommendations were suggested on different forest management aspects, including developing consolidated structured data sets, designing top-ranking model monitoring and analysis and creating a multi-scenario decision support network. Finally, we proposed the main field of research in forestry research by incorporating and developing the participatory method, crowd sourcing, crisis mapping models and simulation systems and by linking data integration framework of geospatial technology, evaluation system and decision support system, to enhance forestry management by systematically and efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdollahnejad A, Panagiotidis D, Surový P (2018) Estimation and extrapolation of tree parameters using spectral correlation between UAV and Pléiades data. Forests 9(2):85. https://doi.org/10.3390/f9020085

  • Abraao MB, Nelson BW, Baniwa JC, Yu DW, Shephard GH Jr (2008) Ethnobotanical ground-truthing: indigenous knowledge, floristic inventories and satellite imagery in the upper Rio Negro, Brazil. J Biogeogr 35:2237–2248

    Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Google Scholar 

  • Anderegg WR, Hicke JA, Fisher RA, Allen CD, Aukema J, Bentz B et al (2015) Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol 208:674–683

    Google Scholar 

  • Baccini A, GP Asner (2013) Improving pantropical forest carbon maps with airborne LiDAR sampling. Carbon Manag 4

    Google Scholar 

  • Balram S, Dragićević S, Meredith T (2004) A collaborative GIS method for integrating local and technical knowledge in establishing biodiversity conservation priorities. Biodivers Conserv 13:1195–1208

    Google Scholar 

  • Barducci A, Guzzi D, Marcoionni P, Pippi I (2002) Infrared detection of active fires and burnt areas: theory and observations. Infrared Phys Technol 43:119–125

    Google Scholar 

  • Bastin J-F, Barbier N, Couteron P, Adams B, Shapiro A, Bogaert J, De Cannière C (2014) Aboveground biomass mapping of African forest mosaics using canopy texture analysis: toward a regional approach. Ecol Appl 24:1984–2001

    Google Scholar 

  • Bauer-Marschallinger B, Sabel D, Wagner W (2014) Optimisation of global grids for high-resolution remote sensing data. Comput. Geosci. 72:84–93

    Google Scholar 

  • Bernier P, Schöne D (2009) Adapting forests and their management to climate change: an overview. Unasylva 60:5–11

    Google Scholar 

  • Boissière M, Beaudoin G, Hofstee C, Rafanoharana S (2014) Participating in REDD+ measurement, reporting, and verification (PMRV): opportunities for local people? Forests 5(8):1855–1878

    Google Scholar 

  • Brockerhoff EG, Jactel H, Parrotta JA, Ferraz SF (2013) Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related ecosystem services. For Ecol Manage 301:43–50

    Google Scholar 

  • Calders K, Jonckheere I, Nightingale J, Vastaranta M (2020) Remote sensing technology applications in forestryand REDD+. Forests 11:188. https://doi.org/10.3390/f11020188

  • Carter N (2013) An assessment of worldview-2 imagery for the classification of a mixed deciduous forest. Rochester Institute of Technology; College of Science: Thomas H. Gosnell School of Life Sciences; Program of Environmental Science, Rochester, NY, p 61

    Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755

    Google Scholar 

  • Clark DB, Castro CS, Alvarado LDA, Read JM (2004) Quantifying mortality of tropical rain forest trees using high-spatial-resolution satellite data. Ecol Lett 7(1):52–59

    Google Scholar 

  • Conrad CC, Hilchey KG (2011) A review of citizen science and community-based environmental monitoring: issues and opportunities. Environ Monit Assess 176(1):273–291

    Google Scholar 

  • Corbett J, Keller P, Kyem PAK, Rambaldi G, Weiner D, Olson R, Muchemi J, McCall M, Chambers R (2006) Mapping for change: practice, technologies and communication. Participatory Learn Action 54:1–13

    Google Scholar 

  • Craglia M, de Bie K, Jackson D, Pesaresi M, Remetey-Fülöpp G, Wang C, Annoni A, Bian L, Campbell F, Ehlers M et al (2012) Digital Earth 2020: towards the vision for the next decade. Int J Digit Earth 5:4–21

    Google Scholar 

  • Csillik O, Kumar P, Mascaro J et al (2019) Monitoring tropical forest carbon stocks and emissions using Planet satellite data. Sci Rep 9:17831. https://doi.org/10.1038/s41598-019-54386-6

    Article  Google Scholar 

  • Danielsen F, Burgess ND, Balmford A, Donald PF, Funder M, Jones JPG et al (2009) Local participation in natural resource monitoring: a characterization of approaches. Conserv Biol 23(1):31–42

    Google Scholar 

  • Detto M, Muller-Landau HC, Mascaro J, Asner GP (2013) Hydrological networks and associated topographic variation as templates for the spatial organization of tropical forest vegetation. PLoS ONE 8:e76296

    Google Scholar 

  • Devaney J, Barrett B, Barrett F, Redmond J, O Halloran J (2015) Forest cover estimation in Ireland using radar remote Sensing: a comparative analysis of forest cover assessment methodologies. PLoS One 10(8):e0133583. Published 2015 Aug 11. https://doi.org/10.1371/journal.pone.0133583

  • DeVries B, Herold M (2013) The science of Measuring, Reporting and Verication (MRV). In: Lyster R, MacKenzie C, McDermott C (eds) Law, Tropical forests and carbon: the case of REDD+. Cambridge University Press, Cambridge, pp 151–183

    Google Scholar 

  • FAO, JRC (2012) Global forest land-use change 1990–2005. In: Lindquist EJ, D’Annunzio R, Gerrand A, MacDicken K, Achard F, Beuchle R, Brink A, Eva HD, Mayaux P, San-Miguel-Ayanz J, Stibig H-J (eds) FAO Forestry Paper No 169. Food and Agriculture Organization of the United Nations, European Commission Joint Research Centre. FAO, Rome

    Google Scholar 

  • Ferrazzoli P, Guerriero L (1996) Passive microwave remote sensing of forests: a model investigation. IEEE Trans Geosci Remote Sens 34(2):433–443

    Google Scholar 

  • Fritz S, McCallum I, Schill C, Perger, C, Grillmayer R, Achard F, Kraxner F, Obersteiner M (2009) Geo-Wiki.Org: the use of crowdsourcing to improve global land cover. Remote Sens 1:345–354

    Google Scholar 

  • Giannetti F, Gottero F, Terzuolo PG (2003) Use of high resolution satellite images in the forest inventory and mapping of Piemonte Region (Italy). In: Corona P, Köhl M, Marchetti M (eds) Advances in forest inventory for sustainable forest management and biodiversity monitoring. Forestry sciences, vol 76. Springer, Dordrecht

    Google Scholar 

  • Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2(4):045023

    Google Scholar 

  • Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc Natl Acad Sci 107:16732–16737

    Google Scholar 

  • Gillis M, Omule A, Brierley T (2005) Monitoring Canada’s forests: the national forest inventory. The Forestry Chronicle 81(2):214–221

    Google Scholar 

  • Global Forest Observations Initiative (2014) Integrating remote-sensing and ground-based observations for estimation of emissions and removals of greenhouse gases in forests: methods and guidance from the Global Forest Observations Initiative. Group on Earth Observations, Geneva

    Google Scholar 

  • Goward SN, Davis PE, Fleming D, Miller L, Townshend JRG (2003) Empirical comparison of Landsat 7 and IKONOS multispectral measurements for selected Earth Observation System (EOS) validation sites, Remote Sens Environ 88:196–209

    Google Scholar 

  • Guariguata MR, Cornelius JP, Locatelli B, Forner C, Sánchez-Azofeifa GA (2008) Mitigation needs adaptation: tropical forestry and climate change. Mitig Adapt Strateg Glob Chang 13:793–808

    Google Scholar 

  • Guo H (2017) Big earth data: a new frontier in earth and information sciences. Big Earth Data 1:4–20

    Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853

    Google Scholar 

  • Heipke C (2010) Crowdsourcing geospatial data. ISPRS-J Photogramm Remote Sens 65:550–557

    Google Scholar 

  • Heurich M, Thoma F (2008) Estimation of forestry stand parameters using laser scanning data in temperate, structurally rich natural European beech (Fagus sylvatica) and Norway spruce (Picea abies) forests. Forestry 81(5):645–661. https://doi.org/10.1093/forestry/cpn038

  • Hosoi F, Nakai Y, Omasa K (2013) 3-D voxel-based solid modeling of a broad-leaved tree for accurate volume estimation using portable scanning lidar. ISPRS J Photogrammetry Remote Sens 82:41–48

    Google Scholar 

  • Houghton RA, Hall F, Goetz SJ (2009) Importance of biomass in the global carbon cycle. J Geophys Res 114:2156–2202

    Google Scholar 

  • Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18

    Google Scholar 

  • Huntingford C, Zelazowski P, Galbraith D, Mercado LM, Sitch S, Fisher R, Lomas M, Walker AP, Jones CD, Booth BBB, Malhi Y, Hemming D, Kay G, Good P, Lewis SL, Phillips OL, Atkin OK, Lloyd J, Gloor E, Zaragoza-Castells J, Meir P, Betts R, Harris PP, Nobre C, Marengo J, Cox PM (2013) Simulated resilience of tropical rainforests to CO2-induced climate change. Nat Geosci 6:268–273

    Google Scholar 

  • Illera P, Fernandez A, Delgado J (1996) Temporal evolution of the NDVI as an indicator of forest fire danger. Int J Remote Sens 17(6):1093–1105

    Google Scholar 

  • Ince PJ, Kramp AD, Skog KE, Yoo DI, Sample VA (2011) Modeling future U.S. forest sector market and trade impacts of expansion in wood energy consumption. J For Econ 17:142–156

    Google Scholar 

  • Jactel H, Petit J, Desprez-Loustau ML, Delzon S, Piou D, Battisti A et al (2012) Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob Change Bio. 18:267–276

    Google Scholar 

  • Ke Y, Quackenbush LJ (2007) Forest species classification and tree crown delineation using QuickBird imagery. In: ASPRS 2007 Annual ConferenceTampa, Florida. Available at: https://www.asprs.org/wp-content/uploads/2011/01/0037.pdf

  • Kleinn C (2002) New technologies and methodologies for national forest inventories. Unasylva 210

    Google Scholar 

  • Kurvonen L, Pulliainen J, Hallikainen M (2002) Active and passive microwave remote sensing of boreal forests. Acta Astronaut 51(10):707–713

    Google Scholar 

  • Laes D, Reutebuch SE, McGaughey RJ, Mitchell B (2011) Guidelines to estimate forest inventory parameters from lidar and field plot, companion document to the advanced lidar applications—forest inventory modeling class, pp 1–22. Available at: https://pdfs.semantic-scholar.org/8979/90a39c23a868fb07787b022e8ee290f06878.pdf

  • Lenoir J, Gegout JC, Dupouey JL, Bert D, Svenning JC (2010) Forest plant community changes during 1989–2007 in response to climate warming in the Jura Mountains (France and Switzerland). J Veg Sci 21:949–964

    Google Scholar 

  • Li G, Huang Z (2017) Data infrastructure for remote sensing big data: integration, management and on-demand service. JisuanjiYanjiu Yu Fazhan/Comput Res Dev 54:267–283

    Google Scholar 

  • Li YZ, Anderson H-E, McGaughey R (2008) A comparison of statistical methods for estimating forest biomass from light detection and ranging data. West J Appl For 23:223–231

    Google Scholar 

  • Lucier A, Ayres M, Karnosky D, Thompson I, Loehle C, Percy K, Sohngen B (2009) Forest responses and vulnerabilities to recent climate change. In: Seppälä R, Buck A, Katila P (eds) Adaptation of forests and people to climate change: a global assessment report, vol World Series Volume 22. IUFRO Helsinki, pp 29–52

    Google Scholar 

  • LVG (2012) DigitaleGeländemodelle (DGM). Product information of the Bavarian Office for Surveying and Geographic Information (LandesamtfürVermessung und Geoinformation Bayern). https://vermessung.bayern.de/file/pdf/1614/download_faltblatt-dgm09.pdf. Accessed on 11 Dec 2012

  • Lynch J, Maslin M, Balzter H, Sweeting M (2013) Choose satellites to monitor deforestation. Nature 496(7445):293–294

    Google Scholar 

  • Managi S, Wang J, Zhang L (2019) Research progress on monitoring and assessment of forestry area for improving forest management in China. For Econ Rev 1(1):57–70

    Google Scholar 

  • Maniatis D, Mollicone D (2010) Options for sampling and stratification for national forest inventories to implement REDD + under the UNFCCC. Carb Bal Manag 5:1–9

    Google Scholar 

  • Mapedza E, Wright J, Fawcett R (2003) An investigation of land cover change in Mafungautsi Forest, Zimbabwe, using GIS and participatory mapping. Appl Geogra 23:1–21

    Google Scholar 

  • McEvoy D, Fünfgeld H, Bosomworth K (2013) Resilience and climate change adaptation: the importance of framing. Plan Pract Res 28:280–293

    Google Scholar 

  • Meier P (2011) What is crisis mapping? An update on the field and looking ahead. iRevolutions.irevolution.net/2011/01/20/what-is-crisis-mapping/

    Google Scholar 

  • Melkas T, Vastaranta M, Holopainen M, Hill R, Rosette J, Suárez J (2008) In accuracy and efficiency of the laser-camera. In: Proceedings of SilviLaser 2008, 8th international conference onLiDAR applications in forest assessment and inventory, Heriot-Watt University, Edinburgh, UK, 17–19 September 2008; SilviLaser 2008 Organizing Committee: Edinburgh, UK, pp 315–324.

    Google Scholar 

  • Meng R, Wu J, Schwager KL, Zhao F, Dennison PE, Cook BD, Brewster K, Green TM, Serbin SP (2017) Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem. Remote Sens Environ 191:95–109

    Google Scholar 

  • Mermoz S, Réjou-Méchain M, Villard L, Le Toan T, Rossi V, Gourlet-Fleury S (2015) Decrease of L-band SAR backscatter with biomass of dense forests. Remote Sens Environ 159:307–317

    Google Scholar 

  • Mitchell AL, Rosenqvist A, Mora B (2017) Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD+. Carbon Balance Manage 12:9. https://doi.org/10.1186/s13021-017-0078-9

    Article  Google Scholar 

  • Morsdorf F, Koetz B, Meier E, Itten KI, Allgöwer B (2006) Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sens Environ 104:50–61

    Google Scholar 

  • Nagendra H (2001) Using remote sensing to assess biodiversity. Int J Remote Sens 22:2377–2400

    Google Scholar 

  • Paletto A, De Meo I, Ferretti F (2010) Social network analysis to support the forest landscape planning: an application in arci-grighine, Sardinia (Italy). Forestry Ideas 16 1(39):28–35

    Google Scholar 

  • Popescu SC, Wynne RH (2004) Seeing the trees in the forest: using lidar and multispectral data fusion with local filtering and variable window size for estimating tree height. Photogramm Eng Remote Sens 70:589–604

    Google Scholar 

  • Pratihast AK, Souza Jr CM, Herold M, Ribbe L (2012) Application of mobile devices for community-based forest monitoring. Sensing a Changing World, 1–6

    Google Scholar 

  • Pratihast AK, DeVries B, Avitabile V, de Bruin S, Herold M, Bergsma A (2016) Design and implementation of an interactive web-based near real-time forest monitoring system. PLoS One 11(3):e0150935. Published 2016 Mar 31. https://doi.org/10.1371/journal.pone.0150935

  • Rambaldi G, McCall M, Weiner D, Kyem PAK (2006) Participatory spatial information management and communication in developing countries. Electron J Inf Syst Dev Countries 2006: 1, 2, 6,

    Google Scholar 

  • Robiglio V, Mala WA (2005) Integrating local and expert knowledge using participatory mapping and GIS to implement integrated forest management options in Akok, Cameroon. The Forestry Chronicle 81(3):392–397

    Google Scholar 

  • Roy PS, Diwakar PG, Singh IJ et al (1994) Evaluation of microwave remote sensing data for forest stratification and canopy characterisation. J Ind Soc Remote Sens 22:31–44. https://doi.org/10.1007/BF03015118

    Article  Google Scholar 

  • Seidl R, Rammer W, Lexer MJ (2011) Adaptation options to reduce climate change vulnerability of sustainable forest management in the Austrian Alps. Can J For Res 41(4):694–706. https://doi.org/10.1139/x10-235

  • Simard M, Pinto N, Fisher JB, Baccini A (2011) Mapping forest canopy height globally with spaceborne lidar. J Geophys Res 116:G04021. https://doi.org/10.1029/2011jg001708

  • Skarlatidou A, Haklay M, Cheng T (2011) Trust in Web GIS: the role of the trustee attributes in the design of trustworthy Web GIS applications. Int J Geogr Inf Sci 25(12):1913–1930. https://doi.org/10.1080/13658816.2011.557379

    Article  Google Scholar 

  • Straub C, Tian J, Seitz R, Reinartz P (2013) Assessment of Cartosat-1 and WorldView-2 stereo imagery in combination with a LiDAR-DTM for timber volume estimation in a highly structured forest in Germany. For Int J For Res 86(4):463–473. https://doi.org/10.1093/forestry/cpt017

  • Sulistyawan BS, Verweij PA, Boot RGA, Purwanti B, Rumbiak W, Wattimena MC, Rahawarin P, Adzan G (2018) Integrating participatory GIS into spatial planning regulation: the case of Merauke District, Papua, Indonesia. Int J Commons 12(1):26–59

    Google Scholar 

  • Sweeney RW (2009) There’s no ‘I’ in Youtube: socialmedia, networked identity and art education. Int J Educ through Art 5(2 and 3):201–212

    Google Scholar 

  • Tang X, Bullock EL, Olofsson P, Estel S, Woodcock CE (2019) Near real-time monitoring of tropical forest disturbance: new algorithms and assessment framework. Remote Sens Environ 224:202–218

    Google Scholar 

  • Thiel C, Drezet P, Weise C, Quegan S, Schmullius C (2006) Radar remote sensing for the delineation of forest cover maps and the detection of deforestation. For Int J For Res 79(5):589–597

    Google Scholar 

  • Thurner M, Beer C, Santoro M, Carvalhais N, Wutzler T, Schepaschenko D, Shvidenko A, Kompter E, Ahrens B, Levick SR, Schmullius C (2014) Carbon stock and density of northern boreal and temperate forests. Glob Ecol Biogeogr 23:297–310

    Google Scholar 

  • Tomppo E, Olsson H, Ståhl G, Nilsson M, Hagner O, Katila M (2008) Combining national forest inventory field plots and remote sensing data for forest databases. Remote Sens Environ 112:1982–1999

    Google Scholar 

  • Trumbore S, Brando P, Hartmann H (2015) Forest health and global change. Science 349:814–818

    Google Scholar 

  • Uddin K, Gilani H, MurthyMSR, Kotru R, Qamer FM (2015) Forest condition monitoring using very-high-resolution satellite imagery in a remote mountain watershed in Nepal. Mountain Res Dev 35(3):264–277

    Google Scholar 

  • UNFCCC (2009) 4/CP.15 Methodological guidance for activities relating to reducing emissions from deforestation and forest degradation and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries. FCCC/CP/2009/11/Add1. Report of the Conference of the Parties on its fifteenth session, held in Copenhagen from 7 to 19 December 2009

    Google Scholar 

  • Vajjhala SP (2005) Integrating GIS and participatory Mapping in community development planning. ESRI International User Conference, Sustainable Development and Humanitarian Affairs Track, San Diego, CA, July 2005. Available at: https://proceedings.esri.com/library/-userconf/proc05/papers/pap1622.pdf

  • Vastaranta M, Melkas T, Holopainen M, Kaartinen H, Hyyppä J, Hyyppä H (2009) Laser-basedfield measurements in tree-level forest data acquisition. Photogramm J Finl 21:51–61

    Google Scholar 

  • Vastaranta M, Latorre EG, Luoma V, Saarinen N, Holopainen M, Hyyppä J (2015) Evaluation of a smartphone App for forest sample plot measurements. Forests 6:1179–1194. https://doi.org/10.3390/f6041179

    Article  Google Scholar 

  • Verlič A, Đurić N, Kokalj Z, Marsetič A, Simončič P, Oštir K (2014) Tree species classification using WorldView-2 Satellite images and laser scanning data in a natural urban forest. Preliminary CommunicationŠumarski List 9–10:477–488

    Google Scholar 

  • Wongkoblap A, Vadillo MA, Curcin V (2017) Researching mental health disorders in the era of social media: systematic review. J Med Internet Res 19(6):e228

    Google Scholar 

  • Woodhouse IH, Mitchard ET, Brolly M, Maniatis D, Ryan CM (2012) Radar backscatter is not a’directmeasure’of forest biomass. Nat Clim Chang 2:556–557

    Google Scholar 

  • World Meteorological Organization (2017) Integrated flood management tools series-crisis mapping and crowdsourcing in flood management, No. 26 version 1.0. Available at: https://www.floodmanagement.info/publications/tools/APFM-_Tool_26_e.pdf

  • Xia J, Yang C, Li Q (2018) Building a spatiotemporal index for earth observation big data. Int J Appl Earth Obs 73:245–252

    Google Scholar 

  • Yang C, Goodchild M, Huang Q, Nebert D, Raskin R, Xu Y, Bambacus M, Fay D (2011) Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing? Int J Digit Earth 4:305–329

    Google Scholar 

  • Yao T, Yang X, Zhao F, Wang Z, Zhang Q, Jupp D, Lovell J, Culvenor D, Newnham G, Ni-Meister W, Schaaf C, Woodcock C, Wang J, Li X, Strahler A (2011) Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar. Remote Sens Environ 115:2965–2974. https://doi.org/10.1016/j.rse.2010.03.019

    Article  Google Scholar 

  • Yao X, Li G, Xia J, Ben J, Cao Q, Long Zhao L, Ma Y, Zhang L, Zhu D (2020) Enabling the big Earth observation data via cloud computing and DGGS: opportunities and challenges. Remote Sens 12(1):62

    Google Scholar 

  • Zhang Z (2017) Adoption of airborne LiDAR data and high spatial resolution satellite imagery for characterisation and classification of forest communities: tests applications in Australian cool temperate rainforest environment. Thesis. https://doi.org/10.4225/03/5897df9948341

  • Zhao X, Ben J, Sun W, Tong X (2016) Overview of the research progress in the earth tessellation grid. CehuiXuebao/Acta Geodaetica et CartographicaSinica 45:1–14

    Google Scholar 

Download references

Acknowledgements

We are grateful to the PG Department of Geography, Raja N. L. Khan Women’s College (Autonomous), affiliated to Vidyasagar University, Midnapore, West Bengal, India for supporting this research. The author (P. K. Shit) acknowledged West Bengal DSTBT for financial support through R&D Research Project Memo no. 104(Sanc.)/ST/P/S&T/10G-5/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gouri Sankar Bhunia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhunia, G.S., Shit, P.K. (2021). Forest Management with Advance Geoscience: Future Prospects. In: Shit, P.K., Pourghasemi, H.R., Das, P., Bhunia, G.S. (eds) Spatial Modeling in Forest Resources Management . Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-56542-8_1

Download citation

Publish with us

Policies and ethics