Skip to main content

Neurological and Psychiatric Side Effects of Antimicrobials

  • Chapter
  • First Online:
Neurological Complications of Infectious Diseases

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 777 Accesses

Abstract

Antimicrobials have great potential to save lives and reduce morbidity, but as with any medication, they have known SEs. The severity of SEs differ between the various drugs and individual patients but antimicrobials do have the ability to cause pronounced harm. In a physician’s best attempt to “do no harm,” it is important that physicians are aware of the neurotoxic SEs of antimicrobials and have a level of suspicion of their conceivable role in the development of new neurologic signs and syndromes. By being cognizant of the potential ADRs, physicians can better detect SEs and change treatment accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhattacharyya S, Darby RR, Raibagkar P, Gonzalez LN, Berkowitz AL. Antibiotic-associated encephalopathy. Neurology. 2016;86:963–71.

    Article  CAS  PubMed  Google Scholar 

  2. Esposito S, Canevini MP, Principi N. Complications associated with antibiotic administration: neurological adverse events and interference with antiepileptic drugs. Int J Antimicrob Agents. 2017;50(1):1–8. https://doi.org/10.1016/j.ijantimicag.2017.01.027.

    Article  CAS  PubMed  Google Scholar 

  3. Gutnick MJ, Prince DA. Penicillinase and the convulsant action of penicillin. Neurology. 1971;21:759–64.

    Article  CAS  PubMed  Google Scholar 

  4. Walker AE, Johnson HC, Kollros II. Penicillin convulsions; the convulsive effects of penicillin applied to the cerebral cortex of monkey and man. Surg Gynecol Obstet. 1945;81:692–701.

    CAS  PubMed  Google Scholar 

  5. Walker AE, Johnson HC. Principles and practice of penicillin therapy in disease of the nervous system. Ann Surg. 1945;122:1125–35.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xiao Y, Xiong T, Meng X, Yu D, Xiao Z, Song L. Different influences on mitochondrial function, oxidative stress and cytotoxicity of antibiotics on primary human neuron and cell lines. J Mol Toxicol. 2018:e22277. https://doi.org/10.1002/jbt.22277.

  7. Schliamser S, Bolander H, Kourtopoulos H, et al. Neurotoxicity of benzylpenicillin: correlation to concentrations in serum, cerebrospinal fluid, and brain tissue fluid in rabbits. J Antimicrob Chemother. 1988;21:365–72.

    Article  CAS  PubMed  Google Scholar 

  8. Schliamser S, Bolander H, Broholm KA, et al. Neurotoxicity of benzylpenicillin in experimental renal failure and Enterobacter cloacae meningitis. J Antimicrob Chemother. 1989;24:215–25.

    Article  CAS  PubMed  Google Scholar 

  9. Schliamser S, Broholm KA, Norrby SR. Comparative neurotoxicity of benzylpenicillin, imipenem/ciliastatin and FCE 22101, a new injectable penem. J Antimicrob Chemother. 1988;22:687–96.

    Article  CAS  PubMed  Google Scholar 

  10. Norrby SR. Neurotoxicity of carbapenem antibacterials. Drug Saf. 1996;2:87–90.

    Article  Google Scholar 

  11. Mattappalil A, Mergenhagen KA. Neurotoxicity with antimicrobials in the elderly: a review. Clin Ther. 2014;36(11):1489–511. https://doi.org/10.1016/j.clinthera.2014.09.020.

    Article  CAS  PubMed  Google Scholar 

  12. Ye RH, Lin MY, Sung CC, Lin SH. Standard dose of piperacillin induced neurotoxicity in advanced renal failure. Acta Nephrologica. 2011;25(2):89–92.

    Google Scholar 

  13. Warstler A, Bean J. Antimicrobial-induced cognitive side effects. Mental Health Clin (online). 2016;6(4):207–14. https://doi.org/10.9740/mhc.2016.07.207.

    Article  Google Scholar 

  14. Huang WT, Hsu YJ, Chu PL, Lin SH. Neurotoxicity associated with standard doses of piperacillin in an elderly patient with renal failure. Infection. 2009;37(4):374–6. https://doi.org/10.1007/s15010-009-8373-3.

    Article  PubMed  Google Scholar 

  15. File TM, Wilcox MH, Stein GE. Summary of ceftaroline fosamil clinical trial studies and clinical safety. Clin Infect Dis. 2012;55(33):173–S180. https://doi.org/10.1093/cid/cis559.

    Article  CAS  Google Scholar 

  16. Rank DR, Friedland HD, Laudano JB. Integrated safety summary of FOCUS 1 and FOCUS 2 trials: Phase III randomized, double-blind studies evaluating ceftaroline fosamil for the treatment of patients with community-acquired pneumonia. J Antimicrob Chemother. 2011;66(3):iii53–9. https://doi.org/10.1093/jac/dkr099.

    CAS  PubMed  Google Scholar 

  17. Corrado ML. Integrated safety summary of CANVAS 1 and 2 trials: Phase III, randomized, double-blind studies evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J Antimicrob Chemother. 2010;65(4):iv67–71. https://doi.org/10.1093/jac/dkq256.

    CAS  PubMed  Google Scholar 

  18. Sorbera M, Chung E, Ho CW, Marzella N. Ceftolozane/Tazobactam: a new option in the treatment of complicated gram-negative infections. Pharm Ther. 2014;39(12):825–32.

    Google Scholar 

  19. Noel GJ. Clinical profile of ceftobiprole, a novel beta lactam antibiotic. Clin Microbiol Infect. 2007;13(2):25–9. https://doi.org/10.1111/j.1469-0691.2007.01725.x.

    Article  CAS  PubMed  Google Scholar 

  20. Grill MF, Maganti RK. Neurotoxic effects associated with antibiotic use: management considerations. Br J Clin Pharmacol. 2011;72(3):381–93. https://doi.org/10.1111/j.1365-2125.2011.03991.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lacroix C, Kheloufi F, Montastruc F, Bennis Y, Pizzoglio V, Micallef J. Serious central nervous system side effects of cephalosporins: A national analysis of serious reports registered in the French Pharmacovigilance Database. J Neurol Sci. 2019; in press. https://doi.org/10.1016/j.jns.2019.01.018.

  22. Grahl JJ, Stollings JL, Rakhit S, Person AK, Wang L, Thompson JL, Pandharipande PP, Ely EW, Patel MB. Antimicrobial exposure and the risk of delirium in critically ill patients. Crit Care. 2018;22:337. https://doi.org/10.1186/s13054-018-2262-z.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pandharipande PP, Girard TD, Jackson JC, Morandi A, Thompson JL, Pun BT, et al. Long-term cognitive impairment after critical illness. N Engl J Med. 2013;369:1306–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salluh JL, Wang H, Schneider EB, Nagaraja N, Yenokyan G, Damluji A, et al. Outcome of delirium in critically ill patients: systemic review and meta-analysis. BMJ. 2015;350:h2538.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Payne LE, Gagnon DJ, Riker RR, Seder DB, Glisic EK, Morris JG, Fraser GL. Cefepime-induced neurotoxicity: a systematic review. Crit Care. 2017;21:276. https://doi.org/10.1186/s13054-017-1856-1.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Neu HC. Safety of cefepime: a new extended-spectrum parenteral cephalosporin. Am J Med. 1996;100:S68–75.

    Article  Google Scholar 

  27. Debysenko L, Nicolson SE. Cefoxitin and ciprofloxacin neurotoxicity and catatonia in a patient on HD. Psychosomatics. 2011;52(4):379–83.

    Article  Google Scholar 

  28. Dakdouki GK, Al-Awar GN. Letter to the Editor: cefepime-induced encephalopathy. Int J Infect Dis. 2004;8:59–61. https://doi.org/10.1016/j.ijid.2003.09.003.

    Article  PubMed  Google Scholar 

  29. Abanades S, Nolla J, Rodriguez-Campello A, Pedro C, Valls A, Farré M. Reversible coma secondary to cefepime neurotoxicity. Ann Pharmacother. 2004;38:606–8. https://doi.org/10.1345/aph.1D322.

    Article  PubMed  Google Scholar 

  30. Hsuan H, Yun-Chung C, Yi-Hsin L. Ceftriaxone-induced non-convulsive status epilepticus in an elderly patient with renal insufficiency. Int J Gerontol. 2018; in press. https://doi.org/10.1016/j.ijge.2018.03.016.

  31. Anzelloti F, Ricciardi L, Monaco D, Ciccocioppo F, Borelli I, Zhuzhuni H, Onofrj M. Cefixime-induced nonconvulsive status epilepticus. Neurol Sci. 2012;33:325–9.

    Article  Google Scholar 

  32. Tanaka A, Takechi K, Watanabe S, Tanaka M, Suemaru K, Araki H. Comparison of the prevalence of convulsions associated with the use of cefepime and meropenem. Int J Clin Pharm. 2013;35:683–7. https://doi.org/10.1007/s11096-013-9799-3.

    Article  CAS  PubMed  Google Scholar 

  33. Calandra GB, Wang C, Aziz M, et al. The safety profile of imipenem/ciliastatin: worldwide clinical experience based on 3470 patients. J Antimicrob Chemother. 1986;18 Suppl E:193–203.

    Article  CAS  PubMed  Google Scholar 

  34. Cunha BA. Meropenem in eldery and renally impaired patients. Int J Antimicrob Agents. 1999;11:167–77.

    CAS  PubMed  Google Scholar 

  35. Pestotnik SL, Classen DC, Evans RS, et al. Prospective surveillance of imipenem/cilastatin use and associated seizures using a hospital information system. Ann Pharmacother. 1993;27:497–501.

    Article  CAS  PubMed  Google Scholar 

  36. Hoffman J, Trimble J, Brophy GM. Safety of imipenem/cilastatin in neurocritical care patients. Neurocrit Care. 2009;10:403–7. https://doi.org/10.1007/s12028-008-9170-z.

    Article  CAS  PubMed  Google Scholar 

  37. Rodloff AC, Goldstein EJ, Torres A. Two decades of imipenem therapy. J Antimicrob Chemother. 2006;58(5):916–29.

    Article  CAS  PubMed  Google Scholar 

  38. Sunbagawa M, Matsumura H, Sumita Y, et al. Structural features resulting in convulsive activity of carbapenem compounds: effect of C-2 side chain. J Antimicrob Chemother. 1995;45:408–16.

    Google Scholar 

  39. Norrby SW, Newell PA, Faulkner KL, et al. Safety profile of meropenem: international clinical experience based on the first 3125 patients treated with meropenem. J Antimicrob Chemother. 1995;36 suppl A:207–23.

    Article  CAS  PubMed  Google Scholar 

  40. Snavely SR, Hodges GR. The neurotoxicity of antibacterial agents. Ann Intern Med. 1984;101:92–104.

    Article  CAS  PubMed  Google Scholar 

  41. Zhanel GG, Ketter N, Rubinstein E, Friedland I, Redman R. Overview of seizure-inducing potential of doripenem. Drug Saf. 2009;32(9):709–16.

    Article  CAS  PubMed  Google Scholar 

  42. Seto AH, Song JC, Guest SS. Ertapenem-associated seziures in a peritoneal dialysis patient. Ann Pharmacother. 2005;39:352–6.

    Article  PubMed  Google Scholar 

  43. Hanna RM, Sun S, Gaynor P. A case of Ertapenem neurotoxicity resulting in vocal tremor and altered mentation in a dialysis dependent liver transplant patient. Antibiotics. 2019;8:1. https://doi.org/10.3390/antibiotics8010001.

    Article  Google Scholar 

  44. Apodaca K, Baker BA, Bin-Bilal H, Raskin Y, Quinn D. Ertapenem-induced delirium: a case report and literature review. Psychosomatics. 2015;56:561–6.

    Article  PubMed  Google Scholar 

  45. Duquaine S, Kitchell E, Tate T, Rannen RC, Wickremasinghe IM. Central nervous system toxicity associated with ertapenem use. Ann Pharmacother. 2011;45:e6. https://doi.org/10.1354/aph.1P528.

    Article  PubMed  Google Scholar 

  46. Patel UC, Fowler MA. Ertapenem-associated neurotoxicity in the spinal cord injury (SCI) population: a case series. J Spinal Cord Med. 2018;41:1. https://doi.org/10.1080/10790268.2017.1368960.

    Article  Google Scholar 

  47. Oo Y, Packham D, Yau W, Munckhof WJ. Ertapenem-associated psychosis and encephalopathy. Intern Med J. 2014. https://doi.org/10.1111/imj.12504.

  48. O’Riordan J, Javed M, Doherty C, Hutchinson M. Worsening of myasthenia gravis on treatment with imipenem/cilastatin. J Neurol Neurosurg Psychiatry. 1994;57:383.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Alván G, Nord CE. Adverse effects of monobactams and carbapenems. Drug Saf. 1995;12(5):305–13.

    Article  PubMed  Google Scholar 

  50. Bhattacharyya S, Darby R, Berkowitz AL. Antibiotic-induced neurotoxicity. Curr Infect Dis Rep. 2014;16:448.

    Article  PubMed  Google Scholar 

  51. Munoz-Gomez S, Gran A, Cunha BA. Meropenem delirium: a previously unrecognized neurologic side effect. J Chemother. 2015;27(2):120–1. https://doi.org/10.1179/1973947814Y.0000000179.

    Article  PubMed  Google Scholar 

  52. Ninan J, George GM. Imipenem-cilastatin-induced psychosis: a case report. J Med Case Rep. 2016;10:107. https://doi.org/10.1186/s13256-016-0883-x.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Prime K, French P. Neuropsychiatric reaction induced by clarithromycin in a patient on highly active antiretroviral therapy (HAART). Sex Transm Infect. 2001;77(4):297. https://doi.org/10.1136/sti.77.4.297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Abouesh A, Stone C, Hobbs W. Antimicrobial-induced mania (antibiomania): a review of spontaneous reports. J Clin Psychopharmacol. 2002;22(1):71–81.

    Article  PubMed  Google Scholar 

  55. Nightingale SD, Koster FT, Mertz GJ, Loss SD. Clarithromycin-induced mania in two patients with AIDS. Clin Infect Dis. 1995;20(6):1563–4.

    Article  CAS  PubMed  Google Scholar 

  56. Bandettini di Poggio M, Anfosso S, Audenino D, Primavera A. Clarithromycin-induced neurotoxicity in adults. J Clin Neurosci. 2011;18:313–8. https://doi.org/10.1016/j.jocn.2010.08.014.

    Article  CAS  PubMed  Google Scholar 

  57. Rubinstein E. Comparative safety of the different macrolides. Int J Antimicrob Agents. 2001;18(suppl 1):71–6. https://doi.org/10.1016/S0924-8579(01)00397-1.

    Article  Google Scholar 

  58. Guay DR, Patterson DR, Seipman N, Craft JC. Overview of the tolerability profile of clarithromycin in preclinical trials. Drug Saf. 1993;8(5):350–64.

    Article  CAS  PubMed  Google Scholar 

  59. Manev H, Favaron M, Candeo P, Fadda E, et al. Macrolide antibiotics protect neurons in culture against the N-methyl-D-aspartate (NMDA) receptor-mediated toxicity of glutamate. Brain Res. 1993;624(1–2):331–5. https://doi.org/10.1016/006-8993(93)90098-8.

    Article  CAS  PubMed  Google Scholar 

  60. Umstead GS, Neumann KH. Erythromycin ototoxicity and acute psychotic reaction in cancer patients with hepatic dysfunction. Arch Intern Med. 1986;146:897–9.

    Article  CAS  PubMed  Google Scholar 

  61. Hopkins S. Clinical toleration and safety of azithromycin. Am J Med. 1991;91:405–55.

    Article  Google Scholar 

  62. Tseng AL, Dolovich L, Salit IE. Azithromycin-related ototoxicity in patients infected with human immunodeficiency virus. Clin Infect Dis. 1997;24:76–7. https://doi.org/10.1093/clinids/24.1.76.

    Article  CAS  PubMed  Google Scholar 

  63. Wallace MR, Miller LK, Nguyen MT, Shields AR. Ototoxicity with azithromycin. Lancet. 1994;343:241.

    Article  CAS  PubMed  Google Scholar 

  64. Juel VC. Myasthenia gravis: management of myasthenic crisis and perioperative care. Semin Neurol. 2004;24(1):75–81. https://doi.org/10.1055/s-2004-829595.

    Article  PubMed  Google Scholar 

  65. Pascuzzi RM. Medications and myasthenia gravis. Indianapolis: Myasthenia Gravis Foundation; 2007.

    Google Scholar 

  66. Perrot X, Bernard N, Vial C, Antoine JC, et al. Myasthenia gravis exacerbation or unmasking associated with telithromycin treatment. Neurologija. 2006;67(12):2256–8. https://doi.org/10.1212/01.wnl.0000247741.72466.8c.

    Article  CAS  Google Scholar 

  67. FDA. Telithromycin FDA safety alert: contraindication in myasthenia gravis. Clin-Alert. 2007;45(4):1–8.

    Google Scholar 

  68. Tomé AM, Filipe A. Quinolones: review of psychiatric and neurological adverse reactions. Drug Saf. 2011;34(6):466–88.

    Article  Google Scholar 

  69. Stahlmann R, Lode H. Toxicity of quinolones. Drugs. 1999;58(suppl 2):37–42. https://doi.org/10.2165/00003495-199958002-00007.

    Article  CAS  PubMed  Google Scholar 

  70. FDA. Drug safety communication. Food and Drug Administration. 2013. Online: www.fda.gov.

  71. Etminan M, Brophy JM, Samii A. Oral fluoroquinolone use and risk of peripheral neuropathy: a pharmacoepidemiologic study. Neurology. 2014;83:1261–3.

    Article  CAS  PubMed  Google Scholar 

  72. Doussau de Bazignan A, Thiessard F, Miremont-Salamé G, Conri C, Haramburu F. Psychiatric adverse effects of fluoroquinolones: review of cases from the French pharmacologic surveillance database. Rev Med Interne. 2006;27(6):448–52.

    Article  CAS  PubMed  Google Scholar 

  73. Lambrichts S, Van Oudenhove L, Sienaert P. Antibiotics and mania: a systematic review. J Affect Disord. 2017;219:149–56. https://doi.org/10.1016/j.jad.2017.05.029.

    Article  PubMed  Google Scholar 

  74. Samyde J, Petit P, Hillaire-Buys D, Faillie JL. Quinolone antibiotics and suicidal behavior: analysis of the World Health Organization’s adverse drug reactions database and discussion of potential mechanisms. Psychopharmacology. 2016;233:2503–11. https://doi.org/10.1007/s00213-016-4300-3.

    Article  CAS  PubMed  Google Scholar 

  75. Jones SC, Sorbello A, Boucher RM. Fluoroquinolone-associated myasthenia gravis exacerbation. Drug Saf. 2011;34(10):839–47. https://doi.org/10.2165/11593110-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  76. Sieb JP. Fluoroquinolone antibiotics block NM transmission. Neurologija. 1998;50(3):804–7. https://doi.org/10.1212/WNL.50.2.804.

    Article  CAS  Google Scholar 

  77. Ilgin S, Can OD, Atil O, Ucel UI, Sener E, Guven I. Ciprofloxacin-induced neurotoxicity: evaluation of possible underlying mechanisms. Toxicol Mech Methods. 2015;25(5):374–81.

    Article  CAS  PubMed  Google Scholar 

  78. Thomas RJ, Reagan DR. Association of a Tourette-like syndrome with ofloxacin. Ann Pharmacother. 1996;30(2):138–41. https://doi.org/10.1177/106002809603000205.

    Article  CAS  PubMed  Google Scholar 

  79. Golomb BA, Koslik HJ, Redd AJ. Fluoroquinolone-induced serious, persistent, multisystem adverse effects. BMJ Case Rep. 2015. https://doi.org/10.1136/bcr-2015-209821.

  80. Lerner SA, Schmitt BA, Seligsohn R, Matz GJ. Comparative study of ototoxicity and nephrotoxicity in patients randomly assigned to treatment with amikacin or gentamicin. Am J Med. 1986;80(6):98–104. https://doi.org/10.1016/0002-9343(86)90486-9.

    Article  CAS  PubMed  Google Scholar 

  81. Lanvers-Kaminsky C, Ciarimboli G. Pharmacogenetics of drug-induced ototoxicity caused by aminoglycosides and cisplatin. Pharmacogenomics. 2017;18(18):1683–95. https://doi.org/10.2217/pgs-2017-0125.

    Article  CAS  PubMed  Google Scholar 

  82. Fee WE. Aminoglycoside ototoxicity in the human. Laryngoscope. 1980;90(S24):1–19. https://doi.org/10.1288/00005537-198010001-00001.

    Article  PubMed  Google Scholar 

  83. Duggal P, Sarkar M. Audiologic monitoring of multidrug resistant tuberculosis patients on aminoglycoside treatment with long term follow up. BMC Ear Nose Throat Disord. 2007;7:5. https://doi.org/10.1186/1472-6815-7-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Brummett RE, Fox KE. Aminoglycoside-induced hearing loss in humans. Antimicrob Agents Chemother. 1989;33(6):797–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Watling SM, Dasta JF. Aminoglycoside dosing considerations in intensive care unit patients. Ann Pharmacother. 1993;27(3):351–6. https://doi.org/10.1177/106002809302700319.

    Article  CAS  PubMed  Google Scholar 

  86. Rybak L. Ototoxicity. Curr Opin Otolaryngol Head Neck Surg. 1996;4:302–7.

    Article  Google Scholar 

  87. Guthrie OW. Aminoglycoside induced ototoxicity. Toxicology. 2008;249:91–6. https://doi.org/10.1016/j.tox.2008.04.015.

    Article  CAS  PubMed  Google Scholar 

  88. Gao Z, Chen Y, Guan M. Mitochondrial DNA mutations associated with aminoglycoside induced ototoxicity. J Otolaryngol. 2017;12(1):1–8. https://doi.org/10.1016/j-joto.2017.02.001.

    Google Scholar 

  89. Paradelis AG, Triantaphyllidis C, Giala MM. NM blocking activity of aminoglycoside antibiotics. Meth Find Exp Clin Pharmacol. 1980;2(1):45–51. https://doi.org/10.1007/978-1-4684-3123-0_51.

    Article  CAS  Google Scholar 

  90. Bischoff A, Meier C, Roth F. Gentamicin neurotoxicity (polyneuropathy-encephalopathy). Schweiz Med Wochenschr. 1977;107:3–8.

    CAS  PubMed  Google Scholar 

  91. Watanabe I, Hodges GR, Dworzack DL, Kepes JJ, Duencsing GF. Neurotoxicity of intrathecal gentamicin: a case report and experiemental study. Ann Neurol. 1978;4:564–72.

    Article  CAS  PubMed  Google Scholar 

  92. Hoeprich PD. The polymyxins. Med Clin North Am. 1970;54:1257–65.

    Article  CAS  PubMed  Google Scholar 

  93. John JF, Falci DR, Rigatto MH, Oliveira RD, Kremer TG, Zavascki AP. Severe infusion-related adverse events and renal failure in patients receiving high-dose IV polymyxin B. Antimicrob Agents Chemother. 2018;62(1). https://doi.org/10.1128/AAC.01617-17.

  94. Falagas ME, Kasiakou SK. Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit Care. 2006;10(1):R27. https://doi.org/10.1186/cc3995.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Thomas RJ. Neurotoxicity of antibacterial therapy. South Med J. 2001;87:869–74.

    Article  Google Scholar 

  96. Kesler A, Goldhammer Y, Hadayer A, Pianka P. The outcome of pseudo tumor cerebri induced by tetracycline therapy. Acta Neurol Scand. 2004;110:408–11.

    Article  CAS  PubMed  Google Scholar 

  97. NINDS investigators. A pilot clinical trial of creatine and minocycline in early Parkinson disease: 18-month results. Clin Neuropharmacol. 2008;31:141–50.

    Article  CAS  Google Scholar 

  98. Atigari OV, Hogan C, Healy D. Doxycycline and suicidality. BMJ Case Rep. 2014. https://doi.org/10.1136/bcr-2013200723.

  99. Wang DD, Englot DJ, Garcia PA, Lawton MT, Young WL. Minocycline and tetracycline-class antibiotics are protective against partial seizures in vivo. Epilepsy Behav. 2012;24(3):314–8. https://doi.org/10.1016/j.yebeh.2012.03.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu Z, Fan Y, Won SJ, Neumann M, Hu D, Zhou L, Weinstein PR, Liu J. Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia. Stroke. 2007;38:146–52.

    Article  CAS  PubMed  Google Scholar 

  101. Padma SMV, Bhasin A, Bhatia R, Garg A, Gaikwad S, Prasad K, Singh MB, Tripathi M. Efficacy of minocycline in acute ischemic stroke: A single-blinded, placebo-controlled trial. Neurol India. 2012;60:23–8.

    Article  Google Scholar 

  102. Greer ND. Tigecycline (Tygacil): the first in the glycylcycline class of antibiotics. Proc (Baylor Univ Med Cent). 2006;19(2):155–61.

    Article  Google Scholar 

  103. Zheng X, Jiang H, Xue L, Qiu F, Zhu S, Li X. Delirium induced by tigecycline treatment for Acinetobacter baumannii infection. Medicine (Baltimore). 2019;98(19):e15399. https://doi.org/10.1097/MD.0000000000015399.

    Article  Google Scholar 

  104. Walker LE, Thomas S, McBride C, Howse M, Turtle LCW, et al. ‘Septrin psychosis’ among renal transplant patients with Pneumocystis jirovecii pneumonia. J Antimicrob Chemother. 2011;66:1117–9. https://doi.org/10.1093/jac/dkr050.

    Article  CAS  PubMed  Google Scholar 

  105. Parashar S, Roy N, Osuagwa FC, Khalid Z, Tinklepaugh M, Mehr S, Dillon JE. Trimethoprim-sulfamethoxazole-induced psychosis culminating in catastrophic self-injury: a case report. Prim Care Companion CNS Disord. 2016;18(1). https://doi.org/10.4088/PCC.15I01828.

  106. Saidinejad M, Burns Ewald M, Shannon MW. Transient psychosis in an immune-competent patient after oral trimethoprim-sulfamethoxazole administration. Pediatrics. 2005;115(6):e239–741. https://doi.org/10.1542/peds.2004-1352.

    Article  Google Scholar 

  107. Weis S, Karagülle D, Kornhuber J, Bayerlein K. Cotrimoxazole-induced psychosis: a case report and review of literature. Pharmacopsychiatry. 2006;39:236–7. https://doi.org/10.1055/s-2006-950393.

    Article  CAS  PubMed  Google Scholar 

  108. McCue JD, Zandt JR. Acute psychoses associated with the use of ciprofloxacin and trimethoprim-sulfamethoxazole. Am J Med. 1991;90:528–9.

    Article  CAS  PubMed  Google Scholar 

  109. Lee KY, Huang CH, Tang HJ, Yang CJ, et al. Acute psychosis related to use of trimethoprim/sulfamethoxazole in the treatment of HIV-infected patients with Pneumocystis jirovecii pneumonia: a multicenter, retrospective study. J Antimicrob Chemother. 2012;67:2749–54. https://doi.org/10.1093/jac/dks283.

    Article  CAS  PubMed  Google Scholar 

  110. Lu YM, Lee YT, Chang HC, Yang HS, et al. Combination of Echinocandins and trimethoprim/sulfamethoxazole for the treatment of Pneumocystis jirovecii pneumonia after heart transplantation. Transplant Proc. 2017;49:1893–8. https://doi.org/10.1016/j.transproceed.2017.04.020.

    Article  CAS  PubMed  Google Scholar 

  111. Hsiao HH, Chu NS, Tsai YF, Chang CS, Lin SF, Liu TC. Trimethoprim/sulfamethoxazole-related acute pscyosis in the second course of treatment after a stem cell transplant: case report and literature review. Exp Clin Transplant. 2013;5:467–8. https://doi.org/10.6002/ect.2013.0119.

    Article  Google Scholar 

  112. Brummett RE. Ototoxicity of vancomycin and analouges. Otolaryngol Clin N Am. 1993;26:821–8.

    Article  CAS  Google Scholar 

  113. Bruniera FR, Ferreira FM, Saviolli LRM, Bacci MR, Feder D, et al. The use of vancomycin with its therapeutic and adverse effects: a review. Eur Rev Med Pharmacol Sci. 2015;19:694–700.

    CAS  PubMed  Google Scholar 

  114. Gupta A, Biyani M, Khaira A. Vancomycin nephrotoxicity: myths and facts. Neth J Med. 2011;69(9):379–83.

    CAS  PubMed  Google Scholar 

  115. TOXNET. United States National Library of Medicine. American Society of Health System Pharmacists; AHFS Drug Information; 2009. http://toxnet.nlm.nih.gov.

  116. Klibanov OM, Filicko JE, DeSimone JA, Tice DS. Sensorineural hearing loss associated with intrathecal vancomycin. Ann Pharmacother. 2003;37:61–5.

    Article  PubMed  Google Scholar 

  117. Forouzesh A, Moise PA, Sakoulas G. Vancomycin ototoxicity: a reevaluation in an era of increasing doses. Antimicrob Agents Chemother. 2009;53(2):483–6. https://doi.org/10.1128/AAC.01088-08.

    Article  CAS  PubMed  Google Scholar 

  118. Mellor JA, Kingdom J, Cafferkey M, Keane CT. Vancomycin toxicity: a prospective study. J Antimicrob Chemother. 1985;15:773–80.

    Article  CAS  PubMed  Google Scholar 

  119. Davey PG, Williams AH. A review of the safety profile of teicoplanin. J Antimicrob Chemother. 1991;27:69–73.

    Article  PubMed  Google Scholar 

  120. Brummett RE, Fox KE, Warchol M, Himes D. Absence of ototoxicity of teichomycin A2 in guinea pigs. Antimicrob Agents Chemother. 1987;31:612–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Maher ER, Hollman A, Grüneberg RN. Teicoplanin-induced ototoxicity in Down’s syndrome. Lancet. 1986;327(8481):613.

    Article  Google Scholar 

  122. Bonnet RM, Mattie H, Laat JA, Schoemaker HC, Frijns JH. Clinical ototoxicity of teicoplanin. Ann Otol Rhinol Laryngol. 2004;113:310–2.

    Article  PubMed  Google Scholar 

  123. Chen AY, Zervos MJ. Vazquez. Dalbavancin: a novel antimicrobial. Int J Clin Pract. 2007;61(5):853–63.

    Article  CAS  PubMed  Google Scholar 

  124. Dunne MW, Talbot GH, Boucher HW, Wilcox M, Puttagunta S. Safety of dalbavancin in the treatment of skin and skin structure infections: a pooled analysis of randomized, comparative studies. Drug Saf. 2016;39:147–57. https://doi.org/10.1007/s40264-015-0374-9.

    Article  CAS  PubMed  Google Scholar 

  125. Zhanel GG, Calic D, Schweizer F, Zelenitsky S, Adam H, Lagacé-Wiens PRS, Rubinstein E, Gin AS, Hoban DJ, Karlowsky JA. New lipoglycopeptides. Drugs. 2010;70(7):859–86.

    Article  CAS  PubMed  Google Scholar 

  126. Cubist Pharmaceuticals. Cubicin (daptomycin for injection) for IV use [package insert]. 2014.

    Google Scholar 

  127. Aronson JK. Meylers side effects of drugs. Philadelphia; Elsevier Science. 2016. p. e16.

    Google Scholar 

  128. Fowler VG, Boucher HW, Corey GR, Abrutyn E, Karchmer AW, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355:653–65.

    Article  CAS  PubMed  Google Scholar 

  129. Stein GE. Safety of newer parenteral antibiotics. Clin Infect Dis. 2005;41:S293–302.

    Article  CAS  PubMed  Google Scholar 

  130. Chen R, Shen K, Chang X, Tanaka T, Li L, Hu P. Pharmacokinetics and safety of tedizolid after single and multiple IV/oral sequential administrations in healthy Chinese subjects. Clin Ther. 2016;38(8):1869–79. https://doi.org/10.1016/j.clinthera.2016.06.014.

    Article  CAS  PubMed  Google Scholar 

  131. Shorr AF, Lodise TP, Corey GR, De Anda C, et al. Analysis of the phase 3 ESTABLISH trials of tedizolid versus linezolid in acute bacterial skin and skin structure infections. Antimicrob Agents Chemother. 2015;59:864–71. https://doi.org/10.1128/AAC03688-14.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Chao CC, Sun HY, Chang YC, Hsieh ST. Painful neuropathy with skin denervation after prolonged use of linezolid. J Neurol Neurosurg Psychiatry. 2008;79:97–9. https://doi.org/10.1136/jnnp.2007.127910.

    Article  PubMed  Google Scholar 

  133. Zivkovic SA, Lacomis D. Severe sensory neuropathy associated with long-term linezolid use. Neurologija. 2005;64(5):926–7. https://doi.org/10.1212/01.WNL.0000152883.53691.5B.

    Article  Google Scholar 

  134. Vishnu VY, Modi M, Goyal MK, Lal V. Linezolid induced reversible peripheral neuropathy. Am J Ther. 2016;23:e1839–41.

    Article  PubMed  Google Scholar 

  135. Bressler AM, Zimmer SM, Gilmore JL, Somani J. Peripheral neuropathy associated with prolonged use of linezolid. Lancet. 2004;4:528–31.

    Article  Google Scholar 

  136. Birmingham MC, Rayner CR, Meagher AK, Flavin SM, et al. Linezolid for the treatment of multidrug-resistant, gram-positive infections: experience from a compassionate-use program. Clin Infect Dis. 2003;36(2):159–68.

    Article  CAS  PubMed  Google Scholar 

  137. Vasquez JA, Arnold AC, Swanson RN, Biswas P, Bassetti M. Safety of long-term use of linezolid: results of an open-label study. Ther Clin Risk Manag. 2016;12:1347–54. https://doi.org/10.2147/TCRM.S109444.

    Article  Google Scholar 

  138. Fletcher J, Aykroyd LE, Feucht EC, Curtis JM. Early onset probable linezolid-induced encephalopathy. J Neurol. 2010;257:433–5. https://doi.org/10.1007/s00415-009-5340-y.

    Article  CAS  PubMed  Google Scholar 

  139. Bobylev I, Maru H, Joshi AR, Lehmann HC. Toxicity to sensory neurons and Schwann cells in experimental linezolid-induced peripheral neuropathy. J Antimicrob Chemother. 2016;71:685–91. https://doi.org/10.1093/jac/dkv386.

    Article  CAS  PubMed  Google Scholar 

  140. De Vriese AS, Coster RV, Smet J, Seneca S, Lovering A, et al. Linezolid-induced inhibition of mitochondrial protein synthesis. CID. 2006;42:1111–7.

    Article  Google Scholar 

  141. Rucker JC, Hamilton SR, Bardenstein D, Isada CM, Lee MS. Linezolid-associated toxic optic neuropathy. Neurologija. 2006;66:595–8.

    Article  CAS  Google Scholar 

  142. Mehta S, Das M, Laxmeshwar C, Jonckheere S, Thi SS, Isaakidis P. Linezolid-associated optic neuropathy in drug-resistant tuberculosis patients in Mumbai, India. PLoS One. 2016;11(9):e0162138. https://doi.org/10.1371/journal.pone.0162138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sotgiu G, Centis R, D’Ambrosio L, Alffenaar JW, Anger HA, Caminero JA, et al. Efficacy, safety, and tolerability of linezolid containing regimens in treating MDR-TB and XDR-TB: systematic review and meta-analysis. Eur Respir J. 2012;40(6):1430–42. https://doi.org/10.1183/09031936.00022912.

    Article  CAS  PubMed  Google Scholar 

  144. Zhang X, Falagas ME, Vardakas KZ, Wang R, Qin R, Wang J, Liu Y. Systematic review and meta-analysis of the efficacy and safety of therapy with linezolid containing regimens in the treatment of multidrug-resistant and extensively drug-resistant tuberculosis. J Thorac Dis. 2015;7(4):603–15. https://doi.org/10.3978/j.issn.2072-1439.2015.03.10.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Zhanel GG, Love R, Adam H, Golden A, Zelenitsky S, et al. Tedizolid: a novel oxazolidinone with potent activity against multidrug-resistant gram-positive pathogens. Drugs. 2015;75(3):253–70. https://doi.org/10.1007/s40265-015-0352-7.

    Article  CAS  PubMed  Google Scholar 

  146. Schlosser MJ, Hosako H, Radovsky A, Butt MT, et al. Lack of neuropathological changes in rats administered tedizolid phosphate for nine months. Antimicrob Agents Chemother. 2015;59(1):475–81. https://doi.org/10.1128/AAC.03950-14.

    Article  CAS  PubMed  Google Scholar 

  147. Nigo M, Luce AM, Aria CA. Long-term use of Tedizolid as suppressive therapy for recurrent methicillin-resistant Staphylococcus aureus graft infection. Clin Infect Dis. 2018;66(12):1975–6. https://doi.org/10.1093/cid/ciy041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kim T, Wills A, Makus A, Prevots DR, Olivier KN. Safety and tolerability of long term use of tedizolid for treatment of nontuberculous mycobacterial infections. Open Forum Infect Dis. 2016;3:577

    Google Scholar 

  149. Bergeron L, Boulé M, Perreault S. Serotonin toxicity associated with concomitant use of linezolid. Ann Pharmacother. 2005;39:956–61. https://doi.org/10.1345/aph.1E523.

    Article  PubMed  Google Scholar 

  150. Taylor JJ, Wilson JW, Estes LL. Linezolid and serotonergic drug interactions: a retrospective survey. CID. 2006;43:180–7.

    Article  CAS  Google Scholar 

  151. Lawrence KR, Adra M, Gillman PK. Serotonin toxicity associated with the use of linezolid: a review of postmarketing data. CID. 2006;42:1578–83.

    Article  CAS  Google Scholar 

  152. Sutton J, Stroup J, Som M. Linezolid-induced serotonin toxicity in a patient not taking monoamine oxidase inhibitors or serotonin receptor antagonists. Proc (Baylor Univ Med Cent). 2016;29(2):214–5.

    Article  Google Scholar 

  153. Flanagan S, Bartizal K, Minassian SL, Fang E, Prokocimer P. In vitro, in vivo, and clinical studies of tedizolid to assess the potential for peripheral or central monoamine oxidase interactions. Antimicrob Agents Chemother. 2013;57(7):3060–6. https://doi.org/10.1128/AAC.00431-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Thai XC, Bruno-Murtha LA. Bell’s palsy associated with linezolid therapy: case report and review of neuropathic adverse events. Pharmacotherapy. 2006;26(8):1183–9.

    Article  PubMed  Google Scholar 

  155. Cholongitas E, Karatzi C, Spyrou S, Georgousaki C, Dasenaki M. Linezolid-induced complex partial seizures in a patient with epilepsy. Scand J Infect Dis. 2009;41:540–1. https://doi.org/10.1080/00365540902896087.

    Article  PubMed  Google Scholar 

  156. Balkan II, Delil S, Karabacak ER, Yemisen M, Ozaras R, Yeni N. Linezolid-induced complex partial seizure in a patient without epilepsy. Int J Infect Dis. 2015;35:120. https://doi.org/10.1016/j.ijid.2015.05.007.

    Article  PubMed  Google Scholar 

  157. Shneker BF, Baylin PD, Nakhla ME. Linezolid inducing complex partial status epilepticus in a patient with epilepsy. Neurologija. 2009;72:378–9.

    Article  Google Scholar 

  158. Loannou P, Stavroulaki M, Mavrikaki V, Papakitsou I, Panagiotakis S. A case of severe hyponatremia due to linezolid-induced SIADH. J Clin Pharm Ther. 2018;43:434–6. https://doi.org/10.1111/jcpt.12681.

    Article  Google Scholar 

  159. Baik SH, Choi YK, Kim HS, Yoon YK, Sohn JW, Kim MJ. A probable case of syndrome of inappropriate antidiuretic hormone secretion associated with linezolid. Am J Health Syst Pharm. 2015;72:1865–9. https://doi.org/10.2146/ajhp150208.

    Article  CAS  PubMed  Google Scholar 

  160. Mishra S. Tedizolid. FDA: Center for drug evaluation and research. 2014.

    Google Scholar 

  161. Al Ahdal O, Bevan DR. Clindamycin-induced NM blockade. Can J Anaesth. 1995;42(7):614–7.

    Article  PubMed  Google Scholar 

  162. Kuriyama A, Jackson JL, Doi A, Kamiya T. Metronidazole-induced central nervous system toxicity: a systematic review. Clin Neuropharmacol. 2011;34(6):241–7.

    Article  CAS  PubMed  Google Scholar 

  163. Mahl TC, Ummadi S. Metronidazole and mental confusion. J Clin Gastroenterol. 2003;36:373–4.

    Article  PubMed  Google Scholar 

  164. Luykx JJ, Vis R, Tijdink JK, Dirckx M, Van Hecke J, Vinkers C. Psychotic symptoms after combined metronidazole-disulfiram use. J Clin Psychopharmacol. 2013;33:136–7.

    Article  PubMed  Google Scholar 

  165. Kim E, Na DG, Kim EY, Kim JH, Son KR, Chang KH. MR imaging of metronidazole-induced encephalopathy: lesion distribution and diffusion-weighted imaging findings. AJNR Am J Neuroradiol. 2007;28:1652–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Alston TA, Abeles RH. Enzymatic conversion of the antibiotic metronidazole to an analog of thiamine. Arch Biochem Biophys. 1987;257:357–62.

    Article  CAS  PubMed  Google Scholar 

  167. Von Rogulia P, Kovac W, Schmid H. Metronidazole encephalopathy in rats. Acta Neuropathol. 1973;25:36–45.

    Article  Google Scholar 

  168. Sørensen CG, Karlsson WK, Amin FM, Lindelof M. Metronidazole-induced encephalopathy: a systematic review. J Neurol. 2018. https://doi.org/10.1007/s00415-018-9147-6.

  169. Graves TD, Condon M, Loucaidou M, Perry R. Reversible metronidazole-induced cerebellar toxicity in a multiple transplant patient. J Neurol Sci. 2009:238–240. https://doi.org/10.1016/j.jns.2009.06.011.

  170. Lamp KC, Freeman CD, Klutman NE, Lacy MK. Pharmacokinetics and pharmacodynamics of the nitroimidazole antimicrobials. Clin Pharmacokinet. 1999;36:353–73.

    Article  CAS  PubMed  Google Scholar 

  171. Hobbs K, Stern-Nezer S, Buckwalter MS, Fischbein N, Caulfield AF. Metronidazole-induced encephalopathy: not always a reversible situation. Neurocrit Care. 2015;22:429–36. https://doi.org/10.1007/s12028-014-0102-9.

    Article  PubMed  Google Scholar 

  172. Mizuta K, Sohohata M, Nozaki O, Kobatake T, Nakayama D, Morimoto T, Mawatari M. Metronidazole-induced encephalopathy in a patient with pyogenic spondylitis: a case report. BMC Musculoskelet Disord. 2018;19(336). https://doi.org/10.1186/s12891-018-2255-8.

  173. Cação G, Fontes S, Salgado M, Rodrigues T, Damásio J. Metronidazole-induced central and peripheral nervous system toxicity. Neurol Sci. 2015;36:1737–9. https://doi.org/10.1007/s10072-015-2260-8.

    Article  PubMed  Google Scholar 

  174. Goolsby TA, Jakeman B, Gaynes R. Clinical relevance of metronidazole and peripheral neuropathy: a systematic review of the literature. Int J Antimicrob Agents. 2018;51:319–25. https://doi.org/10.1016/j.ijantimicag.2017.08.033.

    Article  CAS  PubMed  Google Scholar 

  175. Rao DN, Mason RP. Generation of nitro radical anions of some 5-nitrofurans, 2- and 5-nitroimidazoles by norepinephrine, dopamine, and serotonin. A possible mechanism for neurotoxicity caused by nitroheterocyclic drugs. J Biol Chem. 1987;262:11731–6.

    Article  CAS  PubMed  Google Scholar 

  176. Bradley WG, Karlsson IJ, Jassol CG. Metronidazole neuropathy. BMJ. 1977;2:610–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. McGrath NM, Kent-Smith B, Sharp DM. Reversible optic neuropathy due to metronidazole. Clin Exp Ophthalmol. 2007;35:585–6.

    Article  PubMed  Google Scholar 

  178. Brumfitt W, Hamilton-Miller JMT. Efficacy and safety profile of long-term nitrofurantoin in urinary infections: 18 years’ experience. J Antimicrob Chemother. 1998;24:363–71.

    Article  Google Scholar 

  179. D’Arcy PF. Nitrofurantoin. Drug Intell Clin Pharm. 1985;19:540–7.

    PubMed  Google Scholar 

  180. Rajabally YA. Neuropathies in the older patient. Rev Clin Gerontol. 2006;16:113–24.

    Article  Google Scholar 

  181. Toole JF, Parrish ML. Nitrofurantoin polyneuropathy. Neurology. 1973;23:554–9.

    Article  CAS  PubMed  Google Scholar 

  182. London Z, Albers JW. Toxic Neuropathies associated with pharmaceutic and industrial agents. Neurol Clin. 2007;25:257–76. https://doi.org/10.1016/j.ncl.2006.10.001.

    Article  PubMed  Google Scholar 

  183. Penn RG, Griffin JP. Adverse reactions to nitrofurantoin in the United Kingdom, Sweden, and Holland. BMP. 1982;284:1440–2.

    Article  CAS  Google Scholar 

  184. Kammire LD, Donofrio PD. Nitrofurantoin neuropathy: a forgotten adverse effect. Obstet Gynecol. 2007;110:510–2.

    Article  PubMed  Google Scholar 

  185. Arsalan R, Sabzwari S. Isoniazid induced motor-dominant neuropathy. J Pak Med Assoc. 2015;65(10):1131.

    PubMed  Google Scholar 

  186. Kass JS, Shandera WX. Nervous system effects of antituberculosis therapy. CNS Drugs. 2010;24:655–67.

    Article  CAS  PubMed  Google Scholar 

  187. Thompson JE. How safe is isoniazid? Med J Aust. 1978;1(3):165–9.

    Article  CAS  PubMed  Google Scholar 

  188. Zaoui A, Abdelghani A, Salem HB, Ouanes W, Hayouni A, et al. Early-onset severe isoniazid-induced motor-dominant neuropathy: a case report. EMHJ. 2012;18(3):298–9.

    CAS  PubMed  Google Scholar 

  189. Holdiness MR. Neurological manifestations and toxicities of the antituberculosis drugs: a review. Med Toxicol. 1987;2(1):33–51.

    Article  CAS  PubMed  Google Scholar 

  190. Eichelbaum M, Kroemer HK, Mikus G. Genetically determined differences in drug metabolism as a risk factor in drug toxicity. Toxicol Lett. 1992;64:115–22. https://doi.org/10.1016/0378-427(92)90180-R.

    Article  PubMed  Google Scholar 

  191. Eakarnath A, Koomanachai P, Thamlikitkul V. Pyridoxine (Vitamin B6) usage in tuberculosis patients at Siriraj Hospital. Siriraj Med J. 2007;59:348–9.

    Google Scholar 

  192. CDC: Division of Tuberculosis. Latent tuberculosis infection: a guide for primary health care providers. Centers for Disease Control and Prevention (online). www.cdc.gov/tb/publications/ltbi/treatment.htm.

  193. Wasik A. Mental disorders caused by isonicotinic acid hydrazine (INH) in the course of treatment of pulmonary tuberculosis. Pol Med J. 1970;9:1498–503.

    CAS  PubMed  Google Scholar 

  194. Duncan H, Kerr D. Toxic psychosis due to isoniazid. Br J Dis Chest. 1962;56:131–8.

    Article  CAS  PubMed  Google Scholar 

  195. Alao AO, Yolles JC. Isoniazid-induced psychosis. Ann Pharmacother. 1998;32:889–91.

    Article  CAS  PubMed  Google Scholar 

  196. Duggal HS, Nizamine SH. Novel antipsychotic drugs and INH-related psychosis. Aust N Z J Psychiatry. 2000;34:343–4.

    Article  CAS  PubMed  Google Scholar 

  197. Masood I, Bhat S, Beigh A, Gupta V. Isoniazid-induced psychosis in a patient on DOTS therapy. Ann Trop Med Public Health. 2011;4:126–7.

    Article  Google Scholar 

  198. Denholm J, McBryde E, Eisen D, Chen C, Penington J, Street A. Adverse effects of isoniazid preventative therapy for latent tuberculosis infection: a prospective cohort study. Drug Healthc Patient Saf. 2014;6:145–9. https://doi.org/10.2147/DHPS.S68837.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Bender DA, Russell Jones R. Isoniazid-induced pellagra despite vitamin-B6 supplementation. Lancet. 1979;2:1125–6.

    Article  CAS  PubMed  Google Scholar 

  200. Thomas RHM, Payne CMER, Black MM. Isoniazid-induced pellagra. BMJ. 1981;283:287–8.

    Article  Google Scholar 

  201. Temmerman W, Dhondt A, Vandewoude K. Acute isoniazid intoxication: seizures, acidosis, and coma. Acta Clin Belg. 1999;54(4):211–6.

    Article  CAS  PubMed  Google Scholar 

  202. Wason S, Lacouture PG, Lovejoy FH. Single high-dose pyridoxine treatment for isoniazid overdose. JAMA. 1981;246(10):1102–4. https://doi.org/10.1001/jama.1981.03320100038026.

    Article  CAS  PubMed  Google Scholar 

  203. Yarbrough BE, Wood JP. Isoniazid overdose treated with high-dose pyridoxine. Ann Emerg Med. 1983;12:303–5. https://doi.org/10.1016/S0196-0644(83)80514-9.

    Article  CAS  PubMed  Google Scholar 

  204. Lockman P, Shum S, Allen D. Case report: visual toxicity in acute isoniazid overdose. Internet J Med Toxicol. 2001;4(3):21.

    Google Scholar 

  205. Ruan LY, Fan JT, Hong W, Zhao H, et al. Isoniazid-induced hepatotoxicity and neurotoxicity in rats investigated by 1H NMR based metabolomics approach. Toxicol Lett. 2018;295:256–69. https://doi.org/10.1016/j.toxlet.2018.05.032.

    Article  CAS  PubMed  Google Scholar 

  206. Wood JD, Peesker SJ. A correlation between changes in GABA metabolism and isonicotinic acid hydrazine-induced seizures. Brain Res. 1972;45(2):489–98. https://doi.org/10.1016/0006-8993(72)90477-5.

    Article  CAS  PubMed  Google Scholar 

  207. Perry TL, Kish SJ, Hansen S, Wright JM, Wall RA, Dunn WL, Bellward GD. Elevation of brain GABA content by chronic low-dosage administration of hydrazine, a metabolite of isoniazid. J Neurochem. 1981;37(1):32–29.

    Article  CAS  PubMed  Google Scholar 

  208. Moudgal R, Hosseini S, Colapietro P, Awosika O. Vitamin B6 toxicity revisited: a case of reversible pyridoxine-associated neuropathy and disequilibrium. Neurology. 2018;90:4021

    Google Scholar 

  209. Chamberlain PD, Sadaka A, Shauna B, Lee A. Ethambutol optic neuropathy. Curr Opin Ophthal. 2017;28(6):545–51. https://doi.org/10.1097/ICU.0000000000000416.

    Article  Google Scholar 

  210. Yang HK, Park MJ, Lee JH, et al. Incidence of toxic optic neuropathy with low-dose ethambutol. Int J Tuberc Lung Dis. 2016;20:261–4.

    Article  CAS  PubMed  Google Scholar 

  211. Chen SC, Lin MC, Sheu SJ. Incidence and prognostic factor of ethambutol-related optic neuropathy: 10-year experience in southern Taiwan. Kaohsiung J Med Sci. 2015;31:358–62.

    Article  CAS  PubMed  Google Scholar 

  212. Ezer N, Benedetti A, Darvish-Zargar M, Menzies D. Incidence of ethambutol-related visual impairment during treatment of active tuberculosis. Int J Tuberc Lung Dis. 2013;17:447–55.

    Article  CAS  PubMed  Google Scholar 

  213. Chen HY, Lai SW, Muo CH, et al. Ethambutol-induced optic neuropathy: a nationwide population-based study from Taiwan. Br J Ophthalmol. 2012;96:1368–71.

    Article  PubMed  Google Scholar 

  214. Tsai RK, Lee YH. Reversibility of ethambutol optic neuropathy. J Ocul Pharmacol Ther. 1997;13(5):473–7. https://doi.org/10.1089/jop.1997.13.473.

    Article  CAS  PubMed  Google Scholar 

  215. Yoon YH, Jung KH, Sadun AA, Shin HC, Koh JY. Ethambutol-induced vacuolar changes and neuronal loss in rat retinal cell culture: mediation by endogenous zinc. Toxicol Appl Pharmacol. 2000;162:107–14.

    Article  CAS  PubMed  Google Scholar 

  216. Chung H, Yoon YH, Hwang JJ, Cho KS, Koh JY, Kim JG. Ethambutol-induced toxicity is mediated by zinc and lysosomal membrane permeabilization in cultured retinal cells. Toxicol Appl Pharmacol. 2009;23:163–70. https://doi.org/10.1016/j.taap.2008.11.006.

    Article  CAS  Google Scholar 

  217. Chandrasekar PH. Micafungin: a new echinocandin. Clin Infect Dis. 2006;42(8):1171–8. https://doi.org/10.1086/501020.

    Article  CAS  PubMed  Google Scholar 

  218. Xiang Y, Chen L, Feng Y, Zhou Y, Zhai Y, Lu J. Meta-analysis of the safety of voriconazole in definitive, empirical, and prophylactic therapies for invasive fungal infections. BMC Infect Dis. 2017;17:798. https://doi.org/10.1186/s12879-017-2913-8.

    Article  CAS  Google Scholar 

  219. Dolton MJ, Ray JE, Chen SCA, Ng K, Pont LG, McLachlan AJ. Multicenter study of voriconazole pharmacokinetics and therapeutic drug monitoring. Antimicrob Agents Chemother. 2012;56(9):4793–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis. 2008;46(2):201–11. https://doi.org/10.1086/524669.

    Article  CAS  PubMed  Google Scholar 

  221. Raad II, Graybill JR, Bustamante AB, Cornely OA, et al. Safety of long-term oral posaconazole use in treatment of refractory invasive fungal infections. Clin Infect Dis. 2006;42(12):1726–34. https://doi.org/10.1086/504328.

    Article  CAS  PubMed  Google Scholar 

  222. Mittal D, Wikaitis J. Itraconazole-induced delirium. Psychosomatics. 2003;44(3):260–1.

    Article  PubMed  Google Scholar 

  223. Robinson PA, Knirsch AK, Joseph JA. Fluconazole for life-threatening fungal infections in patients who cannot be treated with conventional antifungal agents. Rev Infect Dis. 1990;12:S349–63.

    Article  PubMed  Google Scholar 

  224. Anaisse EJ, Kontoyiannis DP, Huls C, Vartivarian SE, Karl C, Prince RA, Bosso J, Bodey GP. Safety, plasma concentrations, and efficacy of high-dose fluconazole in invasive mold infections. J Infect Dis. 1994;172:599–602.

    Article  Google Scholar 

  225. Matsumoto K, Ueno K, Yoshimura H, Morii M, Takada M, Sawai T, Mitsutake K, Shibakawa M. Fluconazole-induced convulsions at serum trough concentrations of approximately 80microg/mL. Ther Drug Monit. 2000;22:635–6.

    Article  CAS  PubMed  Google Scholar 

  226. Weddington WW. Delirium and depression associated with amphotericin B. Psychosomatics. 1982;23(10):1076–8.

    Article  PubMed  Google Scholar 

  227. Novartis Pharmaceuticals Corporation. Lamasil (terbinafine hydrochloride) Tablets [package insert]. 2017.

    Google Scholar 

  228. Doty RL, Haxel BR. Objective assessment of terbinafine-induced taste loss. Laryngoscope. 2005;115(11):2035–7. https://doi.org/10.1097/01mlg.0000181462.08683.0c.

    Article  CAS  PubMed  Google Scholar 

  229. Garcia HH, Gilman RH, Horton J, Martinez M, Herrera G, Altamirano J, Cuba JM, Rios-Saavedra N, Verastegui M, Boero J, Gonzalez AE. Albendazole therapy for neurocysticercosis: a prospective double-blind trial comparing 7 versus 14 days of treatment. Neurology. 1997;48:1421–7.

    Article  CAS  PubMed  Google Scholar 

  230. Noboa C. Albendazole therapy for giant subarachnoid cysticerci. Arch Neurol. 1993;50:347–8.

    Article  CAS  PubMed  Google Scholar 

  231. Del Brutto OH. Clues to prevent cerebrovascular hazards of cysticidal drug therapy. Stroke. 1997;28:1088.

    PubMed  Google Scholar 

  232. Bayer HealthCare Pharmaceuticals. Biltricide tablets (praziquantel) [package inset]. 2010.

    Google Scholar 

  233. Garg RK. Medical management of neurocysticercosis. Neurol India. 2001;49:329–37.

    CAS  PubMed  Google Scholar 

  234. Chang GY, Ko DY. Isolated Echinococcus granulosus hydatid cyst in the CNS with severe reaction to treatment. Neurology. 2000;54:778–9. https://doi.org/10.1212/WNL.54.3.778.

    Article  CAS  PubMed  Google Scholar 

  235. Woo E, Yu YL, Huang CY. Cerebral infarct precipitated by praziquantel in neurocysticercosis – a cautionary note. Trop Geogr Med. 1988;40:143–6.

    CAS  PubMed  Google Scholar 

  236. Chai JY. Praziquantel treatment in trematode and cestode infections: an update. Infect Chemother. 2013;45:32–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Guisse F, Polman K, Stelma FF, Mbaye A, et al. Therapeutic evaluation of two different dose regimens of praziquantel in a recent Schistosoma mansoni focus in northern Senegal. Am J Trop Med Hyg. 1997;56:511–4. https://doi.org/10.4269/ajtmh.1997.56.511.

    Article  CAS  PubMed  Google Scholar 

  238. Bada JL, Trevino B, Cabezos J. Convulsive seizures after treatment with praziquantel. BMJ. 1988;296:646. https://doi.org/10.1136/bmj.296.6622.646-a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Chandler RE. Serious neurological adverse effects after Ivermectin – do they occur beyond the indication of Onchocerciasis? Am J Trop Med Hyg. 2018;98(2):382–8. https://doi.org/10.4269/ajtmh.17-0042.

    Article  CAS  PubMed  Google Scholar 

  240. Van Westerloo DJ, Landman GW, Prichard R, Lespine A, Visser LG. Persistent coma in Strongyloides hyperinfection syndrome associated with persistently increased ivermectin levels. Clin Infect Dis. 2014;58:143–4.

    Article  PubMed  Google Scholar 

  241. Merck & Co, Inc. Stromeectol tablets (Ivermectin) [package insert]. 2009.

    Google Scholar 

  242. Muñoz J, Ballester MR, Antonijoan RM, Gich I, et al. Safety and pharmacokinetic profile of fixed-dose ivermectin with an innovative 18mg tablet in healthy adult volunteers. PLoS Negl Trop Dis. 2018;12(1):e0006020. https://doi.org/10.1371/journal.pntd.0006020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Gardon J, Gardon-Wendel N, Kamgno J, Chippaux JP, Boussinesq M. Serious reactions after mass treatment of onchocerciasis with ivermectin in an area endemic for Loa loa infection. Lancet. 1997;350:18–22.

    Article  CAS  PubMed  Google Scholar 

  244. McEnvoy GK. American Hospital Formulary service, drug information. Bethesda: American Society of Health-System Pharmacists; 1999.

    Google Scholar 

  245. Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Goodman AG. Goodman and Gilman’s the pharmacological basis of therapeutics. 9th ed. New York: McGraw-Hill; 1996. p. 1022.

    Google Scholar 

  246. Bescansa E, Nicolas M, Aguado C, Toledano M, Vinals M. Myasthenia gravis aggravated by pyrantel pamoate. J Neurol Neurosurg Psychiatry. 1991;54:563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Rossignol JF, Abaza H, Friedman H. Successful treatment of human fascioliasis with nitazoxanide. Trans R Soc Trop Med Hyg. 1998;92:103–4. https://doi.org/10.1016/S0035-9203(98)90974-9.

    Article  CAS  PubMed  Google Scholar 

  248. Duombo O, Rossignol JF, Pichard E, Traore HA, Dembele TM, et al. Nitazoxanide in the treatment of cyrptosporidial diarrhea and other intestinal parasitic infections associated with acquired immunodeficiency syndrome in tropical Africa. Am J Trop Med Hyg. 1997;56:637–9. https://doi.org/10.4269/ajtmh.1997.56.637.

    Article  Google Scholar 

  249. Hemphill A, Mueller J, Esposito M. Nitazoxanide, a broad-spectrum thiazolide anti-infective agent for the treatment of gastrointestinal infections. Expert Opin Pharmacother. 2006;7(7):953–64. https://doi.org/10.1517/14656566.7.7.

    Article  CAS  PubMed  Google Scholar 

  250. FDA. Drug safety communication: FDA approves label changes for antimalarial drug mefloquine hydrochloride due to risk of serious psychiatric and nerve side effects. Food and Drug Administration. 2013. Online: www.fda.gov.

  251. Aschenbrenner DS. Drug Watch: antimalarial drug can produce neurologic or psychiatric symptoms. AJN. 2013;113(11):22.

    Google Scholar 

  252. Harinasuta T, Lasserre R, Bunnag D, Leimer R, Vinijanont S. Trials of mefloquine in vivax and of mefloquine plus ‘fansidar’ in falciparum malaria. Lancet. 1985;325(8434):885–8. https://doi.org/10.1016/S0140-6736(85)91670-8.

    Article  Google Scholar 

  253. Rendi-Wagner P, Noedl H, Wernsdorfer WH, Wiedermann G, et al. Unexpected frequency, duration, and spectrum of adverse events after therapeutic dose of mefloquine in health adults. Acta Trop. 2002;81:167–73. https://doi.org/10.1016/S0001-706X(01)00210-8.

    Article  CAS  PubMed  Google Scholar 

  254. Overbosch D, Schilthuis H, Bienzle U, Behrens RH, et al. Atovaquone-proguanil versus mefloquine for malaria prophylaxis in nonimmune travelers: results from a randomized, double-blind study. Clin Infect Dis. 2001;33:1015–21. https://doi.org/10.1086/322694.

    Article  CAS  PubMed  Google Scholar 

  255. Nwokolo C, Wambebe C, Akinyanju O, Raji AA, et al. Mefloquine versus proguanil in short-term malaria chemoprophylaxis in sicle cell anaemia. Clin Drug Invest. 2001;21(8):537–44.

    Article  CAS  Google Scholar 

  256. Matteelli A, Saleri N, Bisoffi Z, Gregis G, et al. Mefloquine versus quinine plus sulphalene- pyrimethamine (Metakelfin) for treatment of uncomplicated imported falciparum malaria acquired in Africa. Antimicrob Agents Chemother. 2005;49:663–7. https://doi.org/10.1128/AAC.49.2.663-667.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Nguyen TH, Day NP, Ly VC, Waller D, Mai NT, et al. Post-malaria neurological syndrome. Lancet. 1996;1996:917–21. https://doi.org/10.1016/S0140-6736(96)01409-2.

    Article  Google Scholar 

  258. Jha S, Kumar R, Kumar R. Mefloquine toxicity presenting with polyneuropathy – a report of two cases in India. Trans R Soc Trop Med Hyg. 2006;100(6):594–6. https://doi.org/10.1016/j.trstmh.2006.08.006.

    Article  CAS  PubMed  Google Scholar 

  259. Ritchie EC, Block J, Nevin RL. Psychiatric side effects of mefloquine: applications to forensic psychiatry. J Am Acad Psychiatry Law Online. 2013;41(2):224–35.

    Google Scholar 

  260. Nevin RL, Croft AM. Psychiatric effects of malaria and anti-malarial drugs: historical and modern perspectives. Malar J. 2016;15:332. https://doi.org/10.1186/s12936-016-1391-6.

    Article  PubMed  PubMed Central  Google Scholar 

  261. Wasay M, Wolfe GI, Herrold JM, Burns DK, Barohn RJ. Chloroquine myopathy and neuropathy with elevated CSF protein. Neurologija. 1998;51(4):1226–7. https://doi.org/10.1212/WNL.51.4.1226.

    Article  CAS  Google Scholar 

  262. Browne GF, Coppel DL. Management of quinine overdose. Hum Toxicol. 1984;3(5):399–402. https://doi.org/10.1177/09603271840030050.

    Article  CAS  PubMed  Google Scholar 

  263. Islahudin F, Tindall S, Mellor I, Swift K, et al. The antimalarial drug quinine interferes with serotonin biosynthesis and action. Sci Rep. 2015;4:3618. https://doi.org/10.1038/srep03618.

    Article  Google Scholar 

  264. Novartis Pharmaceuticals Corporation. Coartem (artemether/lumefantrine) tablets [package insert]. 2018.

    Google Scholar 

  265. Guilin Pharmaceuticals. Artesun (Artesunate for injection) [package insert]. 2012.

    Google Scholar 

  266. Genovese RF, Newman DB. Understanding artemisinin-induced brainstem neurotoxicity. Arch Toxicol. 2008;82(6):379–85. https://doi.org/10.1007/s00204-007-0252-z.

    Article  CAS  PubMed  Google Scholar 

  267. Ernst ME, Franey RJ. Acyclovir- and ganciclovir-induced neurotoxicity. Ann Pharmacother. 1998;32(1):111–3. https://doi.org/10.1345/aph.17135.

    Article  CAS  PubMed  Google Scholar 

  268. Haefeli W, Schoenenberger RAZ, Weiss P, Ritz RF. Acyclovir-induced neurotoxicity: concentration-side effect relationship in acyclovir overdose. Am J Med. 1993;94:212–5.

    Article  CAS  PubMed  Google Scholar 

  269. Chowdry MA, Derar N, Hasan S, Hinch B, Ratnam S, Assaly R. Acyclovir-induced neurotoxicity: a case report and review of literature. Am J Ther. 2016;23(3):e941–3. https://doi.org/10.1097/MJT.0000000000000093.

    Article  Google Scholar 

  270. Watson WA, Rhodes NJ, Echenique IA, Angarone MP, Scheetz MH. Resolution of acyclovir-associated neurotoxicity with the aid of improved clearance estimates using a Bayesian approach: a case report and review of literature. J Clin Pharm Ther. 2018;42(3):350–5. https://doi.org/10.1111/jcpt.12520.

    Article  Google Scholar 

  271. Chatelain E, Deminière C, Lacut JY, Potaux L. Severe renal failure and polyneuritis induced by foscarnet. Nephrol Dial Transplant. 1998;13:2368–9.

    Article  CAS  PubMed  Google Scholar 

  272. Lor E, Liu YQ. Neurologic sequelae associated with foscarnet therapy. Ann Pharmacother. 1994;28(9):1035–7. https://doi.org/10.1177/106002809402800908.

    Article  CAS  PubMed  Google Scholar 

  273. MacGregor RR, Graziani AL, Weiss R, Grunwald JE, Gambertoglio JG. Successful foscarnet therapy for cytomegalovirus retinitis in an AIDS patient undergoing HD: rationale for empiric dosing and plasma level monitoring. J Infect Dis. 1991;164:785–7.

    Article  CAS  PubMed  Google Scholar 

  274. Kinney RG, Spach DH. Antiretroviral therapy: adverse effects of antiretroviral medications. National HIV Curriculum. 2018. Online: www.hiv.uw.edu/go/antiretroviral-therapy/adverse-effects/core-concept/all/.

  275. Reliquet V, Mussini JM, Chennebault JM, Lafeuillade A, Raffi F. Peripheral neuropathy during stavudine-didanosine antiretroviral therapy. HIV Med. 2001;2(2):92–6. https://doi.org/10.1046/j.1468-1293.2001.00066.x.

    Article  CAS  PubMed  Google Scholar 

  276. Arendt G, de Nocker D, von Giesen HJ, Nolting T. Neuropsychiatric side effects of efavirenz therapy. Expert Opin Drug Saf. 2007;6:147–54.

    Article  CAS  PubMed  Google Scholar 

  277. Marzolini C, Telenti A, Decosterd LA, Greub G, Biollaz J, Buclin T. Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS. 2001;15:71–5.

    Article  CAS  PubMed  Google Scholar 

  278. Cohen CJ, Andrade-Villanueva J, Clotet B, Fourie J, et al. Rilpivirine versus efavirenz with two background nucleoside or nucleotide reverse transcriptase inhibitors in treatment-naïve adults infected with HIV-1 (THRIVE): a phase 3, randomized, non-inferiority trial. Lancet. 2011;378:229–37. https://doi.org/10.1016/S0140-6736(11)60983-5.

    Article  CAS  PubMed  Google Scholar 

  279. Gilead Sciences, Inc. Biktarvy (bictegravir sodium, emtricitabine and tenofovir aladenamide fumarate) tablet [package insert]. 2019.

    Google Scholar 

  280. Osterholzer DA, Goldman M. Dolutegravir: a next-generation integrase inhibitor for treatment of HIV infection. Clin Infect Dis. 2014;59(2):265–71. https://doi.org/10.1093/cid/ciu22.

    Article  PubMed  Google Scholar 

  281. Merck Sharp & Dohme Corporation. Isentress (Raltegravir) film-coated tablets/chewable tablets, for oral use [package insert]. 2007.

    Google Scholar 

  282. Chan-Tack KM, Struble KA, Birnkrant DB. Intracranial hemorrhage and liver-associated deaths associated with tipranavir/ritonavir: a review of cases from the FDA’s adverse event reporting system. AIDS Patient Care STDs. 2008;22:843–50. https://doi.org/10.1089/apc.2008.0043.

    Article  PubMed  Google Scholar 

  283. McNicholl I, Coffey S. Adverse effects of antiretroviral drugs. HIV InSite. http://hivinsite.ucsf.edu/InSite?page=ar-05-01#S2.4X. Accessed 2 Dec 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Hasbun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bangert, M.K., Hasbun, R. (2021). Neurological and Psychiatric Side Effects of Antimicrobials. In: Hasbun, MD MPH, R., Bloch, MD MPH, K.C., Bhimraj, MD, A. (eds) Neurological Complications of Infectious Diseases. Current Clinical Neurology. Humana, Cham. https://doi.org/10.1007/978-3-030-56084-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56084-3_3

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-56083-6

  • Online ISBN: 978-3-030-56084-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics