Skip to main content

Molecular Diagnostics in Central Nervous System Infections

  • Chapter
  • First Online:
Neurological Complications of Infectious Diseases

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 758 Accesses

Abstract

Central nervous system (CNS) infections can be life threatening if not diagnosed and treated early. The myriad clinical presentations of CNS infections can make a prompt diagnosis challenging. Multiple diagnostic modalities have been used in the past, including conventional microscopic examination, gram stain and cultures, antigen detection and serology, but these techniques have had major limitations - most notably in the diagnosis of viruses and other difficult to culture organisms. Advances in molecular diagnostics have largely replaced conventional techniques with a faster turnaround time and higher sensitivity and specificity. In this review we aim to summarize the currently available armamentarium of molecular assays, as well as their applications and limitations in diagnosing central nervous system infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Proulx N, Frechette D, Toye B, Chan J, Kravcik S. Delays in the administration of antibiotics are associated with mortality from adult acute bacterial meningitis. QJM. 2005;98(4):291–8. https://doi.org/10.1093/qjmed/hci1047. Epub 2005 Mar 1010.

    Article  CAS  PubMed  Google Scholar 

  2. Puges M, Gabriel F, Carrer M, et al. Puzzling mosaics in cerebrospinal fluid. Clin Microbiol Infect. 2018;24(11):1156–7. https://doi.org/10.1016/j.cmi.2018.1106.1019. Epub 2018 Jun 1122.

    Article  CAS  PubMed  Google Scholar 

  3. Bloch KC, Tang YW. Molecular approaches to the diagnosis of meningitis and encephalitis. In: Persing DH, editor. Molecular Microbiology: Diagnostic Principles and Practice. 3rd ed. Washington, DC: American Society for Microbiology Press; 2016. p. 287–305.

    Google Scholar 

  4. van de Beek D, de Gans J, Spanjaard L, Weisfelt M, Reitsma JB, Vermeulen M. Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med. 2004;351(18):1849–59. https://doi.org/10.1056/NEJMoa040845.

    Article  PubMed  Google Scholar 

  5. Brouwer MC, Tunkel AR, van de Beek D. Epidemiology, diagnosis, and antimicrobial treatment of acute bacterial meningitis. Clin Microbiol Rev. 2010;23(3):467–92. https://doi.org/10.1128/CMR.00070-00009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Caliendo AM, Gilbert DN, Ginocchio CC, et al. Better tests, better care: improved diagnostics for infectious diseases. Clin Infect Dis. 2013;57(Suppl 3):S139–70.

    Article  PubMed  Google Scholar 

  7. Tyler KL. Herpes simplex virus infections of the central nervous system: encephalitis and meningitis, including Mollaret’s. Herpes. 2004;11(Suppl 2):57A–64A.

    PubMed  Google Scholar 

  8. Dewan M, Zorc JJ, Hodinka RL, Shah SS. Cerebrospinal fluid enterovirus testing in infants 56 days or younger. Arch Pediatr Adolesc Med. 2010;164(9):824–30. https://doi.org/10.1001/archpediatrics.2010.1153.

    Article  PubMed  Google Scholar 

  9. Welinder-Olsson C, Dotevall L, Hogevik H, et al. Comparison of broad-range bacterial PCR and culture of cerebrospinal fluid for diagnosis of community-acquired bacterial meningitis. Clin Microbiol Infect. 2007;13(9):879–86. https://doi.org/10.1111/j.1469-0691.2007.01756.x. Epub 02007 Jun 01730.

    Article  CAS  PubMed  Google Scholar 

  10. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF. Community-acquired bacterial meningitis in adults. N Engl J Med. 2006;354(1):44–53. https://doi.org/10.1056/NEJMra052116.

    Article  PubMed  Google Scholar 

  11. Dunbar SA, Eason RA, Musher DM, Clarridge JE 3rd. Microscopic examination and broth culture of cerebrospinal fluid in diagnosis of meningitis. J Clin Microbiol. 1998;36(6):1617–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Musher DM, Schell RF. Letter: false-positive gram stains of cerebrospinal fluid. Ann Intern Med. 1973;79(4):603–4.

    Article  CAS  PubMed  Google Scholar 

  13. Aronin SI, Peduzzi P, Quagliarello VJ. Community-acquired bacterial meningitis: risk stratification for adverse clinical outcome and effect of antibiotic timing. Ann Intern Med. 1998;129(11):862–9.

    Article  CAS  PubMed  Google Scholar 

  14. Fitch MT, van de Beek D. Emergency diagnosis and treatment of adult meningitis. Lancet Infect Dis. 2007;7(3):191–200. https://doi.org/10.1016/S1473-3099(1007)70050-70056.

    Article  PubMed  Google Scholar 

  15. Brouwer MC, van de Beek D, Heckenberg SG, Spanjaard L, de Gans J. Community-acquired Listeria monocytogenes meningitis in adults. Clin Infect Dis. 2006;43(10):1233–8. https://doi.org/10.1086/508462. Epub 502006 Oct 508410.

    Article  PubMed  Google Scholar 

  16. Walls T, McSweeney A, Anderson T, Jennings LC. Multiplex-PCR for the detection of viruses in the CSF of infants and young children. J Med Virol. 2017;89(3):559–61.

    Article  CAS  PubMed  Google Scholar 

  17. John MA, Coovadia Y. Meningitis due to a combined infection with Cryptococcus neoformans and Streptococcus pneumoniae in an AIDS patient. J Infect. 1998;36(2):231–2.

    Article  CAS  PubMed  Google Scholar 

  18. Saha DC, Xess I, Biswas A, Bhowmik DM, Padma MV. Detection of Cryptococcus by conventional, serological and molecular methods. J Med Microbiol. 2009;58(Pt 8):1098–105. https://doi.org/10.1099/jmm.1090.007328-007320. Epub 002009 Jun 007315.

    Article  CAS  PubMed  Google Scholar 

  19. Grace E, Asbill S, Virga K. Naegleria fowleri: pathogenesis, diagnosis, and treatment options. Antimicrob Agents Chemother. 2015;59(11):6677–81. https://doi.org/10.1128/AAC.01293-01215. Epub 02015 Aug 01210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Buckwalter SP, Teo R, Espy MJ, Sloan LM, Smith TF, Pritt BS. Real-time qualitative PCR for 57 human adenovirus types from multiple specimen sources. J Clin Microbiol. 2012;50(3):766–71. https://doi.org/10.1128/JCM.05629-05611. Epub 02011 Dec 05614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Buller RS. Molecular detection of respiratory viruses. Clin Lab Med. 2013;33(3):439–60.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Martin DA, Biggerstaff BJ, Allen B, Johnson AJ, Lanciotti RS, Roehrig JT. Use of immunoglobulin m cross-reactions in differential diagnosis of human flaviviral encephalitis infections in the United States. Clin Diagn Lab Immunol. 2002;9(3):544–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Desai A, Chandramuki A, Gourie-Devi M, Ravi V. Detection of Japanese encephalitis virus antigens in the CSF using monoclonal antibodies. Clin Diagn Virol. 1994;2(3):191–9.

    Article  CAS  PubMed  Google Scholar 

  24. Moore CE, Blacksell SD, Taojaikong T, et al. A prospective assessment of the accuracy of commercial IgM ELISAs in diagnosis of Japanese encephalitis virus infections in patients with suspected central nervous system infections in Laos. Am J Trop Med Hyg. 2012;87(1):171–8. https://doi.org/10.4269/ajtmh.2012.4211-0729.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fatmi SS, Zehra R, Carpenter DO. Powassan virus – a new reemerging tick-borne disease. Front Public Health. 2017;5:342. https://doi.org/10.3389/fpubh.2017.00342. eCollection 02017.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Frost HM, Schotthoefer AM, Thomm AM, et al. Serologic evidence of powassan virus infection in patients with suspected lyme disease. Emerg Infect Dis. 2017;23(8):1384–8. https://doi.org/10.3201/eid2308.161971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chiu CY, Coffey LL, Murkey J, et al. Diagnosis of fatal human case of st. louis encephalitis virus infection by metagenomic sequencing, California, 2016. Emerg Infect Dis. 2017;23(10):1964–8. https://doi.org/10.3201/eid2310.161986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Johnson AJ, Noga AJ, Kosoy O, Lanciotti RS, Johnson AA, Biggerstaff BJ. Duplex microsphere-based immunoassay for detection of anti-West Nile virus and anti-St. Louis encephalitis virus immunoglobulin m antibodies. Clin Diagn Lab Immunol. 2005;12(5):566–74. https://doi.org/10.1128/CDLI.1112.1125.1566-1574.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Michelson Y, Lustig Y, Avivi S, Schwartz E, Danielli A. Highly sensitive and specific Zika virus serological assays using a magnetic modulation biosensing system. J Infect Dis. 2019;219(7):1035–43. https://doi.org/10.1093/infdis/jiy1606.

    Article  CAS  PubMed  Google Scholar 

  30. Theel ES, Hata DJ. Diagnostic testing for Zika virus: a postoutbreak update. J Clin Microbiol. 2018;56(4):(pii):JCM.01972-01917. https://doi.org/10.01128/JCM.01972-01917. Print 02018 Apr.

    Article  Google Scholar 

  31. Barzon L, Pacenti M, Ulbert S, Palu G. Latest developments and challenges in the diagnosis of human West Nile virus infection. Expert Rev Anti-Infect Ther. 2015;13(3):327–42. https://doi.org/10.1586/14787210.14782015.11007044. Epub 14782015 Feb 14787212.

    Article  CAS  PubMed  Google Scholar 

  32. Busch MP, Kleinman SH, Tobler LH, et al. Virus and antibody dynamics in acute west nile virus infection. J Infect Dis. 2008;198(7):984–93. https://doi.org/10.1086/591467.

    Article  CAS  PubMed  Google Scholar 

  33. Johnson BW, Kosoy O, Martin DA, et al. West Nile virus infection and serologic response among persons previously vaccinated against yellow fever and Japanese encephalitis viruses. Vector Borne Zoonotic Dis. 2005;5(2):137–45. https://doi.org/10.1089/vbz.2005.1085.1137.

    Article  CAS  PubMed  Google Scholar 

  34. Dacheux L, Reynes JM, Buchy P, et al. A reliable diagnosis of human rabies based on analysis of skin biopsy specimens. Clin Infect Dis. 2008;47(11):1410–7. https://doi.org/10.1086/592969.

    Article  PubMed  Google Scholar 

  35. Noah DL, Drenzek CL, Smith JS, et al. Epidemiology of human rabies in the United States, 1980 to 1996. Ann Intern Med. 1998;128(11):922–30.

    Article  CAS  PubMed  Google Scholar 

  36. Dimech W, Panagiotopoulos L, Marler J, Laven N, Leeson S, Dax EM. Evaluation of three immunoassays used for detection of anti-rubella virus immunoglobulin M antibodies. Clin Diagn Lab Immunol. 2005;12(9):1104–8. https://doi.org/10.1128/CDLI.1112.1109.1104-1108.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mace M, Cointe D, Six C, et al. Diagnostic value of reverse transcription-PCR of amniotic fluid for prenatal diagnosis of congenital rubella infection in pregnant women with confirmed primary rubella infection. J Clin Microbiol. 2004;42(10):4818–20. https://doi.org/10.1128/JCM.4842.4810.4818-4820.2004.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bellini WJ, Helfand RF. The challenges and strategies for laboratory diagnosis of measles in an international setting. J Infect Dis. 2003;187(Suppl 1):S283–90. https://doi.org/10.1086/368040.

    Article  PubMed  Google Scholar 

  39. Lerman SJ. The measles-mumps-rubella vaccination program in Finland. N Engl J Med. 1995;332(16):1103.

    Article  CAS  PubMed  Google Scholar 

  40. Rubin S, Eckhaus M, Rennick LJ, Bamford CG, Duprex WP. Molecular biology, pathogenesis and pathology of mumps virus. J Pathol. 2015;235(2):242–52. https://doi.org/10.1002/path.4445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Studahl M, Lindquist L, Eriksson BM, et al. Acute viral infections of the central nervous system in immunocompetent adults: diagnosis and management. Drugs. 2013;73(2):131–58. https://doi.org/10.1007/s40265-40013-40007-40265.

    Article  CAS  PubMed  Google Scholar 

  42. Hanson KE. The first fully automated molecular diagnostic panel for meningitis and encephalitis: how well does it perform, and when should it be used? J Clin Microbiol. 2016;54(9):2222–4. https://doi.org/10.1128/JCM.01255-01216. Epub 02016 Jul 01213.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Messacar K, Burakoff A, Nix WA, et al. Notes from the field: enterovirus A71 neurologic disease in children - Colorado, 2018. MMWR Morb Mortal Wkly Rep. 2018;67(36):1017–8. https://doi.org/10.15585/mmwr.mm16736a15585.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Branson BM, Stekler JD. Detection of acute HIV infection: we can’t close the window. J Infect Dis. 2012;205(4):521–4. https://doi.org/10.1093/infdis/jir1793. Epub 2011 Dec 1029.

    Article  PubMed  Google Scholar 

  45. Stafylis C, Klausner JD. Evaluation of two 4th generation point-of-care assays for the detection of human immunodeficiency virus infection. PLoS One. 2017;12(8):e0183944. https://doi.org/10.1371/journal.pone.0183944. eCollection 0182017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arribas JR, Clifford DB, Fichtenbaum CJ, Commins DL, Powderly WG, Storch GA. Level of cytomegalovirus (CMV) DNA in cerebrospinal fluid of subjects with AIDS and CMV infection of the central nervous system. J Infect Dis. 1995;172(2):527–31.

    Article  CAS  PubMed  Google Scholar 

  47. Binnicker MJ, Espy ME. Comparison of six real-time PCR assays for qualitative detection of cytomegalovirus in clinical specimens. J Clin Microbiol. 2013;51(11):3749–52. https://doi.org/10.1128/JCM.02005-02013. Epub 02013 Sep 02004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. De Paschale M, Clerici P. Serological diagnosis of Epstein-Barr virus infection: problems and solutions. World J Virol. 2012;1(1):31–43. https://doi.org/10.5501/wjv.v5501.i5501.5531.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang J, Ozzard A, Nathan M, et al. The significance of Epstein-Barr virus detected in the cerebrospinal fluid of people with HIV infection. HIV Med. 2007;8(5):306–11. https://doi.org/10.1111/j.1468-1293.2007.00475.x.

    Article  CAS  PubMed  Google Scholar 

  50. Kuypers J, Boughton G, Chung J, et al. Comparison of the Simplexa HSV1 & 2 Direct kit and laboratory-developed real-time PCR assays for herpes simplex virus detection. J Clin Virol. 2015;62:103–5.

    Article  CAS  PubMed  Google Scholar 

  51. Weil AA, Glaser CA, Amad Z, Forghani B. Patients with suspected herpes simplex encephalitis: rethinking an initial negative polymerase chain reaction result. Clin Infect Dis. 2002;34(8):1154–7. https://doi.org/10.1086/339550. Epub 332002 Mar 339521.

    Article  PubMed  Google Scholar 

  52. Censullo A, Vijayan T. Using nuclear medicine imaging wisely in diagnosing infectious diseases. Open Forum Infect Dis. 2017;4(1):ofx011. https://doi.org/10.1093/ofid/ofx1011. eCollection 2017 Winter.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Agut H, Bonnafous P, Gautheret-Dejean A. Laboratory and clinical aspects of human herpesvirus 6 infections. Clin Microbiol Rev. 2015;28(2):313–35. https://doi.org/10.1128/CMR.00122-00114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Messacar K, Breazeale G, Wei Q, Robinson CC, Dominguez SR. Epidemiology and clinical characteristics of infants with human parechovirus or human herpes virus-6 detected in cerebrospinal fluid tested for enterovirus or herpes simplex virus. J Med Virol. 2015;87(5):829–35.

    Article  PubMed  Google Scholar 

  55. Tunkel AR, Glaser CA, Bloch KC, et al. The management of encephalitis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2008;47(3):303–27. https://doi.org/10.1086/589747.

    Article  CAS  PubMed  Google Scholar 

  56. Nagel MA, Forghani B, Mahalingam R, et al. The value of detecting anti-VZV IgG antibody in CSF to diagnose VZV vasculopathy. Neurology. 2007;68(13):1069–73. https://doi.org/10.1212/1001.wnl.0000258549.0000213334.0000258516. Epub 0000252007 Feb 0000258547.

    Article  CAS  PubMed  Google Scholar 

  57. Marzocchetti A, Di Giambenedetto S, Cingolani A, Ammassari A, Cauda R, De Luca A. Reduced rate of diagnostic positive detection of JC virus DNA in cerebrospinal fluid in cases of suspected progressive multifocal leukoencephalopathy in the era of potent antiretroviral therapy. J Clin Microbiol. 2005;43(8):4175–7. https://doi.org/10.1128/JCM.4143.4178.4175-4177.2005.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nakamichi K, Lim CK, Saijo M. New approach for JC virus detection and its application for PML diagnosis. Rinsho Shinkeigaku. 2014;54(12):1028–30.

    Article  PubMed  Google Scholar 

  59. Boulos A, Fairley D, McKenna J, Coyle P. Evaluation of a rapid antigen test for detection of Streptococcus pneumoniae in cerebrospinal fluid. J Clin Pathol. 2017;70(5):448–50. https://doi.org/10.1136/jclinpath-2016-204104. Epub 202016 Nov 204118.

    Article  CAS  PubMed  Google Scholar 

  60. Le Monnier A, Abachin E, Beretti JL, Berche P, Kayal S. Diagnosis of Listeria monocytogenes meningoencephalitis by real-time PCR for the hly gene. J Clin Microbiol. 2011;49(11):3917–23. https://doi.org/10.1128/JCM.01072-01011. Epub 02011 Sep 01014.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mylonakis E, Hohmann EL, Calderwood SB. Central nervous system infection with Listeria monocytogenes. 33 years' experience at a general hospital and review of 776 episodes from the literature. Medicine (Baltimore). 1998;77(5):313–36.

    Article  CAS  Google Scholar 

  62. Song F, Sun X, Wang X, Nai Y, Liu Z. Early diagnosis of tuberculous meningitis by an indirect ELISA protocol based on the detection of the antigen ESAT-6 in cerebrospinal fluid. Ir J Med Sci. 2014;183(1):85–8.

    Article  CAS  PubMed  Google Scholar 

  63. Patel VB, Theron G, Lenders L, et al. Diagnostic accuracy of quantitative PCR (Xpert MTB/RIF) for tuberculous meningitis in a high burden setting: a prospective study. PLoS Med. 2013;10(10):e1001536.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Thwaites GE, Chau TT, Farrar JJ. Improving the bacteriological diagnosis of tuberculous meningitis. J Clin Microbiol. 2004;42(1):378–9.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yang J, Han X, Liu A, et al. Use of digital droplet PCR to detect Mycobacterium tuberculosis DNA in whole blood-derived DNA samples from patients with pulmonary and extrapulmonary tuberculosis. Front Cell Infect Microbiol. 2017;7:369. https://doi.org/10.3389/fcimb.2017.00369. eCollection 02017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rand JV, Tarasen AJ, Kumar J, Homan SM, Tobin E. Intracytoplasmic granulocytic morulae counts on confirmed cases of ehrlichiosis/anaplasmosis in the Northeast. Am J Clin Pathol. 2014;141(5):683–6. https://doi.org/10.1309/AJCP1306Q1302BOKYALDYZ.

    Article  PubMed  Google Scholar 

  67. Paddock CD, Childs JE. Ehrlichia chaffeensis: a prototypical emerging pathogen. Clin Microbiol Rev. 2003;16(1):37–64.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Thomas LD, Hongo I, Bloch KC, Tang YW, Dummer S. Human ehrlichiosis in transplant recipients. Am J Transplant. 2007;7(6):1641–7. https://doi.org/10.1111/j.1600-6143.2007.01821.x.

    Article  CAS  PubMed  Google Scholar 

  69. Kaplan JE, Vallabhaneni S, Smith RM, Chideya-Chihota S, Chehab J, Park B. Cryptococcal antigen screening and early antifungal treatment to prevent cryptococcal meningitis: a review of the literature. J Acquir Immune Defic Syndr. 2015;68(Suppl 3):S331–9.

    Article  CAS  PubMed  Google Scholar 

  70. Kato CY, Chung IH, Robinson LK, Austin AL, Dasch GA, Massung RF. Assessment of real-time PCR assay for detection of Rickettsia spp. and Rickettsia rickettsii in banked clinical samples. J Clin Microbiol. 2013;51(1):314–7. https://doi.org/10.1128/JCM.01723-01712. Epub 02012 Nov 01727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McQuiston JH, Wiedeman C, Singleton J, et al. Inadequacy of IgM antibody tests for diagnosis of Rocky Mountain Spotted Fever. Am J Trop Med Hyg. 2014;91(4):767–70. https://doi.org/10.4269/ajtmh.4214-0123. Epub 2014 Aug 4264.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Avery RA, Frank G, Eppes SC. Diagnostic utility of Borrelia burgdorferi cerebrospinal fluid polymerase chain reaction in children with Lyme meningitis. Pediatr Infect Dis J. 2005;24(8):705–8.

    Article  PubMed  Google Scholar 

  73. Creegan L, Bauer HM, Samuel MC, Klausner J, Liska S, Bolan G. An evaluation of the relative sensitivities of the venereal disease research laboratory test and the Treponema pallidum particle agglutination test among patients diagnosed with primary syphilis. Sex Transm Dis. 2007;34(12):1016–8.

    PubMed  Google Scholar 

  74. Monath TP, Frey SE. Possible autoimmune reactions following smallpox vaccination: the biologic false positive test for syphilis. Vaccine. 2009;27(10):1645–50. https://doi.org/10.1016/j.vaccine.2008.1610.1084. Epub 2008 Nov 1618.

    Article  CAS  PubMed  Google Scholar 

  75. Wheeler HL, Agarwal S, Goh BT. Dark ground microscopy and treponemal serological tests in the diagnosis of early syphilis. Sex Transm Infect. 2004;80(5):411–4. https://doi.org/10.1136/sti.2003.008821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Johnson RH, Einstein HE. Coccidioidal meningitis. Clin Infect Dis. 2006;42(1):103–7. https://doi.org/10.1086/497596. Epub 492005 Nov 497529.

    Article  PubMed  Google Scholar 

  77. Kassis C, Zaidi S, Kuberski T, et al. Role of coccidioides antigen testing in the cerebrospinal fluid for the diagnosis of coccidioidal meningitis. Clin Infect Dis. 2015;61(10):1521–6. https://doi.org/10.1093/cid/civ1585. Epub 2015 Jul 1524.

    Article  CAS  PubMed  Google Scholar 

  78. Hansen J, Slechta ES, Gates-Hollingsworth MA, et al. Large-scale evaluation of the immuno-mycologics lateral flow and enzyme-linked immunoassays for detection of cryptococcal antigen in serum and cerebrospinal fluid. Clin Vaccine Immunol. 2013;20(1):52–5. https://doi.org/10.1128/CVI.00536-00512. Epub 02012 Oct 00531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tone K, Umeda Y, Makimura K. Cross-reactivity in Cryptococcus antigen latex agglutination test in two commercial kits. Med Mycol. 2016;54(4):439–43. https://doi.org/10.1093/mmy/myv1115. Epub 2016 Feb 1027.

    Article  CAS  PubMed  Google Scholar 

  80. Wheat LJ, Musial CE, Jenny-Avital E. Diagnosis and management of central nervous system histoplasmosis. Clin Infect Dis. 2005;40(6):844–52. https://doi.org/10.1086/427880. Epub 422005 Feb 427816.

    Article  CAS  PubMed  Google Scholar 

  81. Wheat LJ, Batteiger BE, Sathapatayavongs B. Histoplasma capsulatum infections of the central nervous system. A clinical review. Medicine (Baltimore). 1990;69(4):244–60.

    Article  CAS  Google Scholar 

  82. Gitau EN, Kokwaro GO, Karanja H, Newton CR, Ward SA. Plasma and cerebrospinal proteomes from children with cerebral malaria differ from those of children with other encephalopathies. J Infect Dis. 2013;208(9):1494–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Moody A. Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev. 2002;15(1):66–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Murray CK, Gasser RA Jr, Magill AJ, Miller RS. Update on rapid diagnostic testing for malaria. Clin Microbiol Rev. 2008;21(1):97–110. https://doi.org/10.1128/CMR.00035-00007.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Alfonso Y, Fraga J, Fonseca C, et al. Molecular diagnosis of Toxoplasma gondii infection in cerebrospinal fluid from AIDS patients. Cerebrospinal Fluid Res. 2009;6:2. https://doi.org/10.1186/1743-8454-1186-1182.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Liesenfeld O, Press C, Montoya JG, et al. False-positive results in immunoglobulin M (IgM) toxoplasma antibody tests and importance of confirmatory testing: the Platelia Toxo IgM test. J Clin Microbiol. 1997;35(1):174–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Montoya JG. Laboratory diagnosis of Toxoplasma gondii infection and toxoplasmosis. J Infect Dis. 2002;185(Suppl 1):S73–82. https://doi.org/10.1086/338827.

    Article  PubMed  Google Scholar 

  88. Liu P, Weng X, Zhou J, et al. Next generation sequencing based pathogen analysis in a patient with neurocysticercosis: a case report. BMC Infect Dis. 2018;18(1):113. https://doi.org/10.1186/s12879-12018-13015-y.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fan S, Qiao X, Liu L, et al. Next-generation sequencing of cerebrospinal fluid for the diagnosis of neurocysticercosis. Front Neurol. 2018;9:471. https://doi.org/10.3389/fneur.2018.00471. eCollection 02018.

    Article  PubMed  PubMed Central  Google Scholar 

  90. White AC Jr, Coyle CM, Rajshekhar V, et al. Diagnosis and treatment of neurocysticercosis: 2017 clinical practice guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Clin Infect Dis. 2018;66(8):e49–75. https://doi.org/10.1093/cid/cix1084.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cohen J. Management of bacterial meningitis in adults. BMJ. 2003;326(7397):996–7. https://doi.org/10.1136/bmj.1326.7397.1996.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wu HM, Cordeiro SM, Harcourt BH, et al. Accuracy of real-time PCR, Gram stain and culture for Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae meningitis diagnosis. BMC Infect Dis. 2013;13:26. https://doi.org/10.1186/1471-2334-1113-1126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Polage CR, Petti CA. Assessment of the utility of viral culture of cerebrospinal fluid. Clin Infect Dis. 2006;43(12):1578–9.

    Article  PubMed  Google Scholar 

  94. Huang C, Morse D, Slater B, et al. Multiple-year experience in the diagnosis of viral central nervous system infections with a panel of polymerase chain reaction assays for detection of 11 viruses. Clin Infect Dis. 2004;39(5):630–5. https://doi.org/10.1086/422650. Epub 422004 Aug 422611.

    Article  CAS  PubMed  Google Scholar 

  95. Kupila L, Vuorinen T, Vainionpaa R, Hukkanen V, Marttila RJ, Kotilainen P. Etiology of aseptic meningitis and encephalitis in an adult population. Neurology. 2006;66(1):75–80. https://doi.org/10.1212/1201.wnl.0000191407.0000181333.0000191400.

    Article  CAS  PubMed  Google Scholar 

  96. Solomon T. Flavivirus encephalitis. N Engl J Med. 2004;351(4):370–8. https://doi.org/10.1056/NEJMra030476.

    Article  CAS  PubMed  Google Scholar 

  97. Gorgievski-Hrisoho M, Schumacher JD, Vilimonovic N, Germann D, Matter L. Detection by PCR of enteroviruses in cerebrospinal fluid during a summer outbreak of aseptic meningitis in Switzerland. J Clin Microbiol. 1998;36(9):2408–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tarafdar K, Rao S, Recco RA, Zaman MM. Lack of sensitivity of the latex agglutination test to detect bacterial antigen in the cerebrospinal fluid of patients with culture-negative meningitis. Clin Infect Dis. 2001;33(3):406–8. https://doi.org/10.1086/321885. Epub 322001 Jun 321821.

    Article  CAS  PubMed  Google Scholar 

  99. Flores LL, Steingart KR, Dendukuri N, et al. Systematic review and meta-analysis of antigen detection tests for the diagnosis of tuberculosis. Clin Vaccine Immunol. 2011;18(10):1616–27. https://doi.org/10.1128/CVI.05205-05211. Epub 02011 Aug 05210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Antinori S, Radice A, Galimberti L, Magni C, Fasan M, Parravicini C. The role of cryptococcal antigen assay in diagnosis and monitoring of cryptococcal meningitis. J Clin Microbiol. 2005;43(11):5828–9.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ji S, Ni L, Zhang J, Huang J, Zhou Z, Yu Y. Value of three capsular antigen detection methods in diagnosis and efficacy assessment in patients with cryptococcal meningoencephalitis. Zhonghua Yi Xue Za Zhi. 2015;95(46):3733–6.

    PubMed  Google Scholar 

  102. Wilson DA, Sholtis M, Parshall S, Hall GS, Procop GW. False-positive cryptococcal antigen test associated with use of BBL Port-a-Cul transport vials. J Clin Microbiol. 2011;49(2):702–3. https://doi.org/10.1128/JCM.01169-01110. Epub 02010 Dec 01115.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Jarvis JN, Percival A, Bauman S, et al. Evaluation of a novel point-of-care cryptococcal antigen test on serum, plasma, and urine from patients with HIV-associated cryptococcal meningitis. Clin Infect Dis. 2011;53(10):1019–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Meya DB, Manabe YC, Castelnuovo B, et al. Cost-effectiveness of serum cryptococcal antigen screening to prevent deaths among HIV-infected persons with a CD4+ cell count < or = 100 cells/microL who start HIV therapy in resource-limited settings. Clin Infect Dis. 2010;51(4):448–55. https://doi.org/10.1086/655143.

    Article  PubMed  Google Scholar 

  105. Lyons JL, Roos KL, Marr KA, et al. Cerebrospinal fluid (1,3)-beta-D-glucan detection as an aid for diagnosis of iatrogenic fungal meningitis. J Clin Microbiol. 2013;51(4):1285–7. https://doi.org/10.1128/JCM.00061-00013. Epub 02013 Jan 00030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lyons JL, Thakur KT, Lee R, et al. Utility of measuring (1,3)-beta-d-glucan in cerebrospinal fluid for diagnosis of fungal central nervous system infection. J Clin Microbiol. 2015;53(1):319–22.

    Article  CAS  PubMed  Google Scholar 

  107. Salvatore CM, Chen TK, Toussi SS, et al. (1-->3)-beta-d-Glucan in Cerebrospinal Fluid as a Biomarker for Candida and Aspergillus Infections of the Central Nervous System in Pediatric Patients. J Pediatric Infect Dis Soc. 2016;5(3):277–86. https://doi.org/10.1093/jpids/piv1014. Epub 2015 Mar 1019.

    Article  PubMed  Google Scholar 

  108. Landry ML, Tang YW. Immunologic and molecular methods for viral diagnosis. In: Detrick B, Schmitz JL, Hamilton RG, editors. Manual of molecular and clinical laboratory immunology. 8th ed. Washington, DC: American Society for Microbiology Press; 2016. p. 309–18.

    Google Scholar 

  109. Storch GA. Diagnostic virology. Clin Infect Dis. 2000;31(3):739–51.

    Article  CAS  PubMed  Google Scholar 

  110. Chabierski S, Barzon L, Papa A, et al. Distinguishing West Nile virus infection using a recombinant envelope protein with mutations in the conserved fusion-loop. BMC Infect Dis. 2014;14:246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Morjaria S, Arguello E, Taur Y, et al. West Nile virus central nervous system infection in patients treated with rituximab: implications for diagnosis and prognosis, with a review of literature. Open Forum Infect Dis. 2015;2(4):ofv136. https://doi.org/10.1093/ofid/ofv1136. eCollection 2015 Dec.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Grahn A, Studahl M. Varicella-zoster virus infections of the central nervous system – prognosis, diagnostics and treatment. J Infect. 2015;71(3):281–93. https://doi.org/10.1016/j.jinf.2015.1006.1004. Epub 2015 Jun 1012.

    Article  PubMed  Google Scholar 

  113. Henao-Martinez AF, Johnson SC. Diagnostic tests for syphilis: new tests and new algorithms. Neurol Clin Pract. 2014;4(2):114–22. https://doi.org/10.1212/1201.CPJ.0000435752.0000417621.0000435748.

    Article  PubMed  PubMed Central  Google Scholar 

  114. He T, Kaplan S, Kamboj M, Tang YW. Laboratory diagnosis of central nervous system infection. Curr Infect Dis Rep. 2016;18(11):35. https://doi.org/10.1007/s11908-11016-10545-11906.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Yang S, Rothman RE. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis. 2004;4(6):337–48. https://doi.org/10.1016/S1473-3099(1004)01044-01048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Smalling TW, Sefers SE, Li H, Tang YW. Molecular approaches to detecting herpes simplex virus and enteroviruses in the central nervous system. J Clin Microbiol. 2002;40(7):2317–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tang YW. Laboratory diagnosis of CNS infections by molecular amplification techniques. Expert opin Med Diagn. 2007;1(4):489–509.

    Article  CAS  PubMed  Google Scholar 

  118. DeBiasi RL, Kleinschmidt-DeMasters BK, Weinberg A, Tyler KL. Use of PCR for the diagnosis of herpesvirus infections of the central nervous system. J Clin Virol. 2002;25(Suppl 1):S5–11.

    Article  CAS  PubMed  Google Scholar 

  119. Weisz RR. Brain biopsy in herpes simplex encephalitis. N Engl J Med. 1980;303(12):700. https://doi.org/10.1056/NEJM198009183031212.

    Article  CAS  PubMed  Google Scholar 

  120. Burns J, Redfern DR, Esiri MM, McGee JO. Human and viral gene detection in routine paraffin embedded tissue by in situ hybridisation with biotinylated probes: viral localisation in herpes encephalitis. J Clin Pathol. 1986;39(10):1066–73. https://doi.org/10.1136/jcp.1039.1010.1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Abdullah KG, Li Y, Agarwal P, et al. Long-term utility and complication profile of open craniotomy for biopsy in patients with idiopathic encephalitis. J Clin Neurosci. 2017;37:69–72. https://doi.org/10.1016/j.jocn.2016.1011.1013. Epub 2016 Dec 1012.

    Article  PubMed  Google Scholar 

  122. DeBiasi RL, Tyler KL. Polymerase chain reaction in the diagnosis and management of central nervous system infections. Arch Neurol. 1999;56(10):1215–9.

    Article  CAS  PubMed  Google Scholar 

  123. Sawyer MH, Holland D, Aintablian N, Connor JD, Keyser EF, Waecker NJ Jr. Diagnosis of enteroviral central nervous system infection by polymerase chain reaction during a large community outbreak. Pediatr Infect Dis J. 1994;13(3):177–82.

    Article  CAS  PubMed  Google Scholar 

  124. Tang YW, Mitchell PS, Espy MJ, Smith TF, Persing DH. Molecular diagnosis of herpes simplex virus infections in the central nervous system. J Clin Microbiol. 1999;37(7):2127–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nolte FS, Rogers BB, Tang YW, et al. Evaluation of a rapid and completely automated real-time reverse transcriptase PCR assay for diagnosis of enteroviral meningitis. J Clin Microbiol. 2011;49(2):528–33.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Capaul SE, Gorgievski-Hrisoho M. Detection of enterovirus RNA in cerebrospinal fluid (CSF) using NucliSens EasyQ Enterovirus assay. J Clin Virol. 2005;32(3):236–40.

    Article  CAS  PubMed  Google Scholar 

  127. Musso D, Gubler DJ. Zika Virus. Clin Microbiol Rev. 2016;29(3):487–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Waggoner JJ, Pinsky BA. Zika Virus: diagnostics for an emerging pandemic threat. J Clin Microbiol. 2016;54(4):860–7. https://doi.org/10.1128/JCM.00279-00216. Epub 02016 Feb 00217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Colmenero JD, Queipo-Ortuno MI, Reguera JM, Baeza G, Salazar JA, Morata P. Real time polymerase chain reaction: a new powerful tool for the diagnosis of neurobrucellosis. J Neurol Neurosurg Psychiatry. 2005;76(7):1025–7. https://doi.org/10.1136/jnnp.2004.049411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lawn SD, Nicol MP. Xpert(R) MTB/RIF assay: development, evaluation and implementation of a new rapid molecular diagnostic for tuberculosis and rifampicin resistance. Future Microbiol. 2011;6(9):1067–82. https://doi.org/10.2217/fmb.1011.1084.

    Article  PubMed  Google Scholar 

  131. Denkinger CM, Schumacher SG, Boehme CC, Dendukuri N, Pai M, Steingart KR. Xpert MTB/RIF assay for the diagnosis of extrapulmonary tuberculosis: a systematic review and meta-analysis. Eur Respir J. 2014;44(2):435–46.

    Article  PubMed  Google Scholar 

  132. Bahr NC, Tugume L, Rajasingham R, et al. Improved diagnostic sensitivity for tuberculous meningitis with Xpert((R)) MTB/RIF of centrifuged CSF. Int J Tuberc Lung Dis. 2015;19(10):1209–15. https://doi.org/10.5588/ijtld.1215.0253.

    Article  CAS  PubMed  Google Scholar 

  133. Leber AL, Everhart K, Balada-Llasat JM, et al. Multicenter evaluation of biofire filmarray meningitis/encephalitis panel for detection of bacteria, viruses, and yeast in cerebrospinal fluid specimens. J Clin Microbiol. 2016;54(9):2251–61. https://doi.org/10.1128/JCM.00730-00716. Epub 02016 Jun 00722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Messacar K, Breazeale G, Robinson CC, Dominguez SR. Potential clinical impact of the film array meningitis encephalitis panel in children with suspected central nervous system infections. Diagn Microbiol Infect Dis. 2016;86(1):118–20. https://doi.org/10.1016/j.diagmicrobio.2016.1005.1020. Epub 2016 Jun 1012.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Bradshaw MJ, Venkatesan A. Herpes simplex virus-1 encephalitis in adults: pathophysiology, diagnosis, and management. Neurotherapeutics. 2016;13(3):493–508. https://doi.org/10.1007/s13311-13016-10433-13317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Whitley RJ. Viral encephalitis. N Engl J Med. 1990;323(4):242–50. https://doi.org/10.1056/NEJM199007263230406.

    Article  CAS  PubMed  Google Scholar 

  137. Grydeland H, Walhovd KB, Westlye LT, et al. Amnesia following herpes simplex encephalitis: diffusion-tensor imaging uncovers reduced integrity of normal-appearing white matter. Radiology. 2010;257(3):774–81. https://doi.org/10.1148/radiol.10100179. Epub 10102010 Oct 10100178.

    Article  PubMed  Google Scholar 

  138. Hart RP, Kwentus JA, Frazier RB, Hormel TL. Natural history of Kluver-Bucy syndrome after treated herpes encephalitis. South Med J. 1986;79(11):1376–8.

    Article  CAS  PubMed  Google Scholar 

  139. Whitley RJ. Herpes simplex virus infections of the central nervous system. Continuum (Minneap Minn). 2015;21(6 Neuroinfectious Disease):1704–13.

    Google Scholar 

  140. Whitley RJ, Alford CA, Hirsch MS, et al. Vidarabine versus acyclovir therapy in herpes simplex encephalitis. N Engl J Med. 1986;314(3):144–9. https://doi.org/10.1056/NEJM198601163140303.

    Article  CAS  PubMed  Google Scholar 

  141. Van TT, Mongkolrattanothai K, Arevalo M, Lustestica M, Dien Bard J. Impact of a rapid herpes simplex virus pcr assay on duration of acyclovir therapy. J Clin Microbiol. 2017;55(5):1557–65. https://doi.org/10.1128/JCM.02559-02516. Epub 02017 Mar 02558.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Gitman MR, Ferguson D, Landry ML. Comparison of Simplexa HSV 1 & 2 PCR with culture, immunofluorescence, and laboratory-developed TaqMan PCR for detection of herpes simplex virus in swab specimens. J Clin Microbiol. 2013;51(11):3765–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tyler KL. Update on herpes simplex encephalitis. Rev Neurol Dis. 2004;1(4):169–78.

    PubMed  Google Scholar 

  144. Kimberlin DW, Lakeman FD, Arvin AM, et al. Application of the polymerase chain reaction to the diagnosis and management of neonatal herpes simplex virus disease. National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. J Infect Dis. 1996;174(6):1162–7.

    Article  CAS  PubMed  Google Scholar 

  145. Gomez CA, Pinsky BA, Liu A, Banaei N. Delayed diagnosis of tuberculous meningitis misdiagnosed as herpes simplex virus-1 encephalitis with the filmarray syndromic polymerase chain reaction panel. Open Forum Infect Dis. 2017;4(1):ofw245. https://doi.org/10.1093/ofid/ofw1245. eCollection 2017 Winter.

    Article  PubMed  Google Scholar 

  146. Al-Soud WA, Radstrom P. Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol. 2001;39(2):485–93. https://doi.org/10.1128/JCM.1139.1122.1485-1493.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Launes C, Armero G, Anton A, et al. Molecular epidemiology of severe respiratory disease by human rhinoviruses and enteroviruses at a tertiary paediatric hospital in Barcelona, Spain. Clin Microbiol Infect. 2015;21(8):799.e795–7.

    Article  Google Scholar 

  148. Liermann K, Schafler A, Henke A, Sauerbrei A. Evaluation of commercial herpes simplex virus IgG and IgM enzyme immunoassays. J Virol Methods. 2014;199:29–34.

    Article  CAS  PubMed  Google Scholar 

  149. Rhein J, Bahr NC, Hemmert AC, et al. Diagnostic performance of a multiplex PCR assay for meningitis in an HIV-infected population in Uganda. Diagn Microbiol Infect Dis. 2016;84(3):268–73.

    Article  CAS  PubMed  Google Scholar 

  150. Ramanan P, Bryson AL, Binnicker MJ, Pritt BS, Patel R. Syndromic panel-based testing in clinical microbiology. Clin Microbiol Rev. 2018;31(1):(pii):31/31/e00024-00017. https://doi.org/10.01128/CMR.00024-00017. Print 02018 Jan.

    Article  Google Scholar 

  151. Wilson MR, Naccache SN, Samayoa E, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N Engl J Med. 2014;370(25):2408–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Gutierrez M, Emmanuel PJ. Expanding molecular diagnostics for central nervous system infections. Adv Pediatr Infect Dis. 2018;65(1):209–27. https://doi.org/10.1016/j.yapd.2018.1004.1005. Epub 2018 Jun 1020.

    Article  Google Scholar 

  153. Wilson MR, Sample HA, Zorn KC, et al. Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis. N Engl J Med. 2019;380(24):2327–40. https://doi.org/10.1056/NEJMoa1803396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Naccache SN, Peggs KS, Mattes FM, et al. Diagnosis of neuroinvasive astrovirus infection in an immunocompromised adult with encephalitis by unbiased next-generation sequencing. Clin Infect Dis. 2015;60(6):919–23.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Fan S, Ren H, Wei Y, et al. Next-generation sequencing of the cerebrospinal fluid in the diagnosis of neurobrucellosis. Int J Infect Dis. 2018;67:20–4. https://doi.org/10.1016/j.ijid.2017.1011.1028. Epub 2017 Nov 1028.

    Article  CAS  PubMed  Google Scholar 

  156. Salzberg SL, Breitwieser FP, Kumar A, et al. Next-generation sequencing in neuropathologic diagnosis of infections of the nervous system. Neurol Neuroimmunol Neuroinflamm. 2016;3(4):e251. https://doi.org/10.1212/NXI.0000000000000251. eCollection 0000000000002016 Aug.

    Article  PubMed  PubMed Central  Google Scholar 

  157. NTH M, Phu NH, LNT N, et al. Central nervous system infection diagnosis by next-generation sequencing: a glimpse into the future? Open Forum Infect Dis. 2017;4(2):ofx046. https://doi.org/10.1093/ofid/ofx1046. eCollection 2017 Spring.

    Article  Google Scholar 

  158. Yao M, Zhou J, Zhu Y, et al. Detection of Listeria monocytogenes in CSF from three patients with meningoencephalitis by next-generation sequencing. J Clin Neurol. 2016;12(4):446–51. https://doi.org/10.3988/jcn.2016.3912.3984.3446. Epub 2016 Jul 3926.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Greninger AL, Langelier C, Cunningham G, et al. Two rapidly growing mycobacterial species isolated from a brain abscess: first whole-genome sequences of mycobacterium immunogenum and mycobacterium llatzerense. J Clin Microbiol. 2015;53(7):2374–7. https://doi.org/10.1128/JCM.00402-00415. Epub 02015 Apr 00429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Wei Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nawar, T., Kaltsas, A., Tang, YW. (2021). Molecular Diagnostics in Central Nervous System Infections. In: Hasbun, MD MPH, R., Bloch, MD MPH, K.C., Bhimraj, MD, A. (eds) Neurological Complications of Infectious Diseases. Current Clinical Neurology. Humana, Cham. https://doi.org/10.1007/978-3-030-56084-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56084-3_2

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-56083-6

  • Online ISBN: 978-3-030-56084-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics