Skip to main content

Strengthening Deterministic Policies for POMDPs

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12229))

Included in the following conference series:

Abstract

The synthesis problem for partially observable Markov decision processes (POMDPs) is to compute a policy that satisfies a given specification. Such policies have to take the full execution history of a POMDP into account, rendering the problem undecidable in general. A common approach is to use a limited amount of memory and randomize over potential choices. Yet, this problem is still NP-hard and often computationally intractable in practice. A restricted problem is to use neither history nor randomization, yielding policies that are called stationary and deterministic. Previous approaches to compute such policies employ mixed-integer linear programming (MILP). We provide a novel MILP encoding that supports sophisticated specifications in the form of temporal logic constraints. It is able to handle an arbitrary number of such specifications. Yet, randomization and memory are often mandatory to achieve satisfactory policies. First, we extend our encoding to deliver a restricted class of randomized policies. Second, based on the results of the original MILP, we employ a preprocessing of the POMDP to encompass memory-based decisions. The advantages of our approach over state-of-the-art POMDP solvers lie (1) in the flexibility to strengthen simple deterministic policies without losing computational tractability and (2) in the ability to enforce the provable satisfaction of arbitrarily many specifications. The latter point allows to take trade-offs between performance and safety aspects of typical POMDP examples into account. We show the effectiveness of our method on a broad range of benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.prismmodelchecker.org/files/rts-poptas/.

  2. 2.

    http://www.pomdp.org/examples/.

  3. 3.

    https://www.erwinwalraven.nl/solvepomdp/.

References

  1. Amato, C., Bernstein, D.S., Zilberstein, S.: Optimizing fixed-size stochastic controllers for POMDPs and decentralized POMDPs. Auton. Agent. Multi-Agent Syst. 21(3), 293–320 (2010). https://doi.org/10.1007/s10458-009-9103-z

    Article  Google Scholar 

  2. Aras, R., Dutech, A., Charpillet, F.: Mixed integer linear programming for exact finite-horizon planning in decentralized POMDPs. In: ICAPS, pp. 18–25. AAAI (2007). http://www.aaai.org/Library/ICAPS/2007/icaps07-003.php

  3. Baier, C., Dubslaff, C., Klüppelholz, S.: Trade-off analysis meets probabilistic model checking. In: CSL-LICS, pp. 1:1–1:10. ACM (2014). https://doi.org/10.1145/2603088.2603089

  4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  5. Braziunas, D.: POMDP Solution Methods. University of Toronto (2003)

    Google Scholar 

  6. Brock, O., Trinkle, J., Ramos, F.: SARSOP: Efficient point-based POMDP planning by approximating optimally reachable belief spaces. In: Robotics: Science and Systems IV. MIT Press (2009). https://doi.org/10.15607/RSS.2008.IV.009

  7. Carr, S., Jansen, N., Wimmer, R., Serban, A.C., Becker, B., Topcu, U.: Counterexample-guided strategy improvement for POMDPs using recurrent neural networks. In: IJCAI, pp. 5532–5539. ijcai.org (2019)

    Google Scholar 

  8. Chatterjee, K., Chmelík, M., Gupta, R., Kanodia, A.: Qualitative analysis of POMDPs with temporal logic specifications for robotics applications. In: ICRA, pp. 325–330 (2015). https://doi.org/10.1109/ICRA.2015.7139019

  9. Chatterjee, K., Chmelík, M., Gupta, R., Kanodia, A.: Optimal cost almost-sure reachability in POMDPs. Artif. Intell. 234, 26–48 (2016). https://doi.org/10.1016/j.artint.2016.01.007

    Article  MathSciNet  MATH  Google Scholar 

  10. Chatterjee, K., De Alfaro, L., Henzinger, T.A.: Trading memory for randomness. In: QEST. IEEE (2004). https://doi.org/10.1109/QEST.2004.1348035

  11. Chrisman, L.: Reinforcement learning with perceptual aliasing: the perceptual distinctions approach. In: AAAI, pp. 183–188. AAAI Press/The MIT Press (1992)

    Google Scholar 

  12. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.-P., Papusha, I., Poonawala, H.A., Topcu, U.: Sequential convex programming for the efficient verification of parametric MDPs. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 133–150. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_8

    Chapter  Google Scholar 

  13. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.-P., Topcu, U.: Synthesis in pMDPs: a tale of 1001 parameters. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 160–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_10

    Chapter  Google Scholar 

  14. Dehnert, C., Jansen, N., Wimmer, R., Ábrahám, E., Katoen, J.-P.: Fast debugging of PRISM models. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 146–162. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_11

    Chapter  Google Scholar 

  15. Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective model checking of Markov decision processes. Logical Methods Comput. Sci. 4(4) (2008). https://doi.org/10.2168/LMCS-4(4:8)2008

  16. Givan, R., Dean, T.L., Greig, M.: Equivalence notions and model minimization in Markov decision processes. Artif. Intell. 147(1–2), 163–223 (2003)

    Article  MathSciNet  Google Scholar 

  17. Gurobi Optimization, LLC: Gurobi optimizer reference manual (2019). http://www.gurobi.com

  18. Haesaert, S., Nilsson, P., Vasile, C.I., Thakker, R., Agha-mohammadi, A., Ames, A.D., Murray, R.M.: Temporal logic control of POMDPs via label-based stochastic simulation relations. IFAC-PapersOnLine 51(16), 271–276 (2018). In: ADHS

    Article  Google Scholar 

  19. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric Markov models. Softw. Tools Technol. Transfer 13(1), 3–19 (2010)

    Article  Google Scholar 

  20. Hauskrecht, M.: Value-function approximations for partially observable Markov decision processes. J. Artif. Intell. Res. 13, 33–94 (2000)

    Article  MathSciNet  Google Scholar 

  21. Junges, S., et al.: Parameter synthesis for Markov models. CoRR abs/1903.07993 (2019)

    Google Scholar 

  22. Junges, S., Jansen, N., Wimmer, R., Quatmann, T., Winterer, L., Katoen, J., Becker, B.: Finite-state controllers of POMDPs using parameter synthesis. In: UAI, pp. 519–529. AUAI Press (2018)

    Google Scholar 

  23. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1), 99–134 (1998)

    Article  MathSciNet  Google Scholar 

  24. Kumar, A., Mostafa, H., Zilberstein, S.: Dual formulations for optimizing Dec-POMDP controllers. In: ICAPS, pp. 202–210. AAAI Press (2016)

    Google Scholar 

  25. Littman, M.L., Topcu, U., Fu, J., Isbell, C., Wen, M., MacGlashan, J.: Environment-independent task specifications via GLTL. arXiv preprint 1704.04341 (2017)

    Google Scholar 

  26. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning and infinite-horizon partially observable Markov decision problems. In: AAAI, pp. 541–548. AAAI Press (1999)

    Google Scholar 

  27. Meuleau, N., Peshkin, L., Kim, K.E., Kaelbling, L.P.: Learning finite-state controllers for partially observable environments. In: UAI, pp. 427–436. Morgan Kaufmann (1999)

    Google Scholar 

  28. Norman, G., Parker, D., Zou, X.: Verification and control of partially observable probabilistic systems. Real-Time Syst. 53(3), 354–402 (2017)

    Article  Google Scholar 

  29. Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of Markov decision processes. Math. Oper. Res. 12(3), 441–450 (1987)

    Article  MathSciNet  Google Scholar 

  30. Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: an anytime algorithm for POMDPs. In: IJCAI, pp. 1025–1032. Morgan Kaufmann (2003)

    Google Scholar 

  31. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE Computer Society (1977). https://doi.org/10.1109/SFCS.1977.32

  32. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Statistics, Wiley-Interscience (2005)

    Google Scholar 

  33. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach (3. internat. ed.). Pearson Education (2010)

    Google Scholar 

  34. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1999)

    MATH  Google Scholar 

  35. Shani, G., Pineau, J., Kaplow, R.: A survey of point-based POMDP solvers. Auton. Agents Multi-Agent Syst. 27(1), 1–51 (2013)

    Article  Google Scholar 

  36. Silver, D., Veness, J.: Monte-carlo planning in large pomdps. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) NIPS, pp. 2164–2172. Curran Associates, Inc. (2010)

    Google Scholar 

  37. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. The MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  38. Velasquez, A.: Steady-state policy synthesis for verifiable control. In: Kraus, S. (ed.) IJCAI, pp. 5653–5661. ijcai.org (2019). https://doi.org/10.24963/ijcai.2019/784

  39. Vlassis, N., Littman, M.L., Barber, D.: On the computational complexity of stochastic controller optimization in POMDPs. ACM Trans. Comput. Theory 4(4), 12:1–12:8 (2012). https://doi.org/10.1145/2382559.2382563

    Article  MATH  Google Scholar 

  40. Wang, Y., Chaudhuri, S., Kavraki, L.E.: Bounded policy synthesis for POMDPs with safe-reachability objectives. In: AAMAS, pp. 238–246. Int’l Foundation for Autonomous Agents and Multiagent Systems Richland, SC, USA/ACM (2018)

    Google Scholar 

  41. Wimmer, R., Jansen, N., Ábrahám, E., Katoen, J.P., Becker, B.: Minimal counterexamples for linear-time probabilistic verification. Theor. Comput. Sci. 549, 61–100 (2014). https://doi.org/10.1016/j.tcs.2014.06.020

    Article  MathSciNet  MATH  Google Scholar 

  42. Winterer, L., et al.: Motion planning under partial observability using game-based abstraction. In: CDC, pp. 2201–2208. IEEE (2017)

    Google Scholar 

  43. Wongpiromsarn, T., Frazzoli, E.: Control of probabilistic systems under dynamic, partially known environments with temporal logic specifications. In: CDC, pp. 7644–7651. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonore Winterer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Winterer, L., Wimmer, R., Jansen, N., Becker, B. (2020). Strengthening Deterministic Policies for POMDPs. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds) NASA Formal Methods. NFM 2020. Lecture Notes in Computer Science(), vol 12229. Springer, Cham. https://doi.org/10.1007/978-3-030-55754-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55754-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55753-9

  • Online ISBN: 978-3-030-55754-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics