Skip to main content

Self-Assembly in Bulk

  • Chapter
  • First Online:
Emulsions, Microemulsions and Foams

Part of the book series: Soft and Biological Matter ((SOBIMA))

  • 816 Accesses

Abstract

Surfactants frequently self-assemble in water or in oil, into a large variety of structures, depending on the surfactant and on its concentration. The most common structures will be described in this chapter. Surfactants may also self-assemble in the presence of both oil and water, and structures such as microemulsions are encountered. Self-assembly also occurs in mixed solutions of surfactants and polymers or particles, in solutions of amphiphilic polymers or proteins and in dispersions of particles with functionalized surfaces. A recent survey can be found in the book edited by Nagarajan (2019). Because of their relevance to emulsions, microemulsions, and foams, this chapter will focus on surfactant-based systems and their main features. The common case of surfactant molecules with small polar head groups and hydrophobic carbon chains will be mostly considered. The topic is described in more detail in many books that the reader may consult, for instance, Tanford (1980), Israelachvili (1992), and Evans and Wennerström (1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abillon, O., Chatenay, D., Langevin, D., & Meunier, J. (1984). Light scattering study of a lower critical consolute point in a micellar system. Journal de Physique Lettres, 45(5), 223–231.

    Article  Google Scholar 

  • Alexander, S., Chaikin, P. M., Grant, P., Morales, G. J., Pincus, P., & Hone, D. (1984). Charge renormalization, osmotic-pressure, and bulk modulus of colloidal crystals – Theory. Journal of Chemical Physics, 80(11), 5776–5781. https://doi.org/10.1063/1.446600.

    Article  ADS  Google Scholar 

  • Almgren, M., Hansson, P., Mukhtar, E., & Vanstam, J. (1992). Aggregation of alkyltrimethylammonium surfactants in aqueous poly(styrenesulfonate) solutions. Langmuir, 8(10), 2405–2412. https://doi.org/10.1021/la00046a011.

    Article  Google Scholar 

  • Aniansson, E. A. G., Wall, S. N., Almgren, M., Hoffmann, H., Kielmann, I., Ulbricht, W., Zana, R., Lang, G., & Tondre, C. (1976). Theory of kinetics of micellar equilibria and quantitative interpretation of chemical relaxation studies of micellar solutions of ionic surfactants. Journal of Physical Chemistry, 80(9), 905–922.

    Article  Google Scholar 

  • Appell, J., Bassereau, P., Marignan, J., & Porte, G. (1990). Polymorphism in dilute surfactant solutions: A neutron scattering study. In Trends in colloid and interface science IV (pp. 13–18). Springer.

    Google Scholar 

  • Arriaga, L. R., Drenckhan, W., Salonen, A., Rodrigues, J. A., Iniguez-Palomares, R., Rio, E., & Langevin, D. (2012a). On the long-term stability of foams stabilised by mixtures of nano-particles and oppositely charged short chain surfactants. Soft Matter, 8(43), 11085–11097. https://doi.org/10.1039/c2sm26461g.

    Article  ADS  Google Scholar 

  • Arriaga, L. R., Monroy, F., & Langevin, D. (2012b). The polymer glass transition in nanometric films. European Physics Letters, 98(3), 38007. https://doi.org/10.1209/0295-5075/98/38007.

    Article  ADS  Google Scholar 

  • Auvray, X., Petipas, C., Anthore, R., Rico, I., & Lattes, A. (1989). X-ray diffraction study of mesophases of cetyltrimethylammonium bromide in water, formamide, and glycerol. The Journal of Physical Chemistry, 93(21), 7458–7464.

    Article  Google Scholar 

  • Aveyard, R., Binks, B. P., & Fletcher, P. D. I. (1989). Interfacial-tensions and aggregate structure in C12E5 oil-water microemulsion systems. Langmuir, 5(5), 1210–1217. https://doi.org/10.1021/la00089a015.

    Article  Google Scholar 

  • Bernheim-Groswasser, A., Tlusty, T., Safran, S. A., & Talmon, Y. (1999). Direct observation of phase separation in microemulsion networks. Langmuir, 15(17), 5448–5453. https://doi.org/10.1021/la990301q.

    Article  Google Scholar 

  • Binks, B. P. (1993). Relationship between microemulsion phase behavior and macroemulsion type in systems containing nonionic surfactant. Langmuir, 9(1), 25–28.

    Article  Google Scholar 

  • Binks, B. P., Meunier, J., Abillon, O., & Langevin, D. (1989). Measurement of film rigidity and interfacial tensions in several ionic surfactant oil-water microemulsion systems. Langmuir, 5(2), 415–421.

    Article  Google Scholar 

  • Binks, B. P., Kellay, H., & Meunier, J. (1991). Effects of alkane chain length on the bending elasticity constant K of AOT monolayers at the planar oil-water interface. Europhysics Letters, 16(1), 53–58.

    Article  ADS  Google Scholar 

  • Binks, B. P., Kirkland, M., & Rodrigues, J. A. (2008). Origin of stabilisation of aqueous foams in nanoparticle-surfactant mixtures. Soft Matter, 4(12), 2373–2382. https://doi.org/10.1039/b811291f.

    Article  ADS  Google Scholar 

  • Briceño-Ahumada, Z., Drenckhan, W., & Langevin, D. (2016a). Coalescence in draining foams made of very small bubbles. Physical Review Letters, 116, 128302.

    Google Scholar 

  • Briceño-Ahumada, Z., Maldonado, A., Imperor-Clerc, M., & Langevin, D. (2016b). On the stability of foams made with surfactant bilayer phases. Soft Matter, 12(5), 1459–1467.

    Google Scholar 

  • Cabane, B., & Duplessix, R. (1982). Organization of surfactant micelles adsorbed on a polymer molecule in water: A neutron scattering study. Journal de Physique, 43(10), 1529–1542.

    Article  Google Scholar 

  • Cates, M. E., & Candau, S. J. (1990). Statics and dynamics of worm-like surfactant micelles. Journal of Physics-Condensed Matter, 2(33), 6869–6892.

    Article  ADS  Google Scholar 

  • Cazabat, A. M., Langevin, D., Meunier, J., & Pouchelon, A. (1982). Critical behavior in microemulsions. Advances in Colloid and Interface Science, 16, 175–199.

    Article  Google Scholar 

  • Cazabat, A. M., Chatenay, D., Langevin, D., & Meunier, J. (1983). Percolation and critical points in microemulsions. Faraday Discussions, 76(76), 291–303.

    Article  Google Scholar 

  • Chang, D. P., Barauskas, J., Dabkowska, A. P., Wadsater, M., Tiberg, F., & Nylander, T. (2015). Non-lamellar lipid liquid crystalline structures at interfaces. Advances in Colloid and Interface Science, 222, 135–147. https://doi.org/10.1016/j.cis.2014.11.003.

    Article  Google Scholar 

  • Chatellier, X., & Joanny, J. F. (1996). Adsorption of polyelectrolyte solutions on surfaces: A Debye-Huckel theory. Journal de Physique II, 6(12), 1669–1686. https://doi.org/10.1051/jp2:1996156.

    Article  ADS  Google Scholar 

  • Daillant, J., Bosio, L., Benattar, J., & Meunier, J. (1989). Capillary waves and bending elasticity of monolayers on water studied by x-ray reflectivity as a function of surface pressure. Europhysics Letters, 8(5), 453.

    Article  ADS  Google Scholar 

  • de Gennes, P. G. (1979). Scaling concepts in polymers physics. Ithaca: Cornell University Press.

    Google Scholar 

  • de Gennes, P. G., & Prost, J. (1993). The physics of liquid crystals. Oxford: Clarendon Press.

    Google Scholar 

  • de Gennes, P. G., & Taupin, C. (1982). Microemulsions and the flexibility of oil-water interfaces. Journal of Physical Chemistry, 86(13), 2294–2304.

    Article  Google Scholar 

  • Dechaine, G. P., & Gray, M. R. (2011). Membrane diffusion measurements do not detect exchange between asphaltene aggregates and solution phase. Energy & Fuels, 25, 509–523. https://doi.org/10.1021/ef101050a.

    Article  Google Scholar 

  • Dobrynin, A. V., & Rubinstein, M. (2005). Theory of polyelectrolytes in solutions and at surfaces. Progress in Polymer Science, 30(11), 1049–1118. https://doi.org/10.1016/j.progpolymsci.2005.07.006.

    Article  Google Scholar 

  • Dubois, M., Deme, B., Gulik-Krzywicki, T., Dedieu, J. C., Vautrin, C., Desert, S., Perez, E., & Zemb, T. (2001). Self-assembly of regular hollow icosahedra in salt-free catanionic solutions. Nature, 411(6838), 672–675.

    Article  ADS  Google Scholar 

  • Duwe, H., Kaes, J., & Sackmann, E. (1990). Bending elastic moduli of lipid bilayers: Modulation by solutes. Journal de Physique, 51(10), 945–961.

    Article  Google Scholar 

  • Eastoe, J., Dupont, A., & Steytler, D. C. (2003). Fluorinated surfactants in supercritical CO2. Current Opinion in Colloid & Interface Science, 8(3), 267–273. https://doi.org/10.1016/S1359-0294(03)00053-0.

    Article  Google Scholar 

  • Endo, H., Mihailescu, M., Monkenbusch, M., Allgaier, J., Gompper, G., Richter, D., Jakobs, B., Sottman, T., Strey, R., & Grillo, I. (2001). Effect of amphiphilic block copolymers on the structure and phase behavior of oil–water-surfactant mixtures. The Journal of Chemical Physics, 115(1), 580–600. https://doi.org/10.1063/1.1377881.

    Article  ADS  Google Scholar 

  • Evans, F., & Wennerström, W. (1999). The colloidal domain (2nd ed.). New York: Wiley.

    Google Scholar 

  • Eyssautier, J., Levitz, P., Espinat, D., Jestin, J., Gummel, J., Grillo, I., & Barre, L. (2011). insight into asphaltene nanoaggregate structure inferred by small angle neutron and X-ray scattering. Journal of Physical Chemistry B, 115(21), 6827–6837. https://doi.org/10.1021/jp111468d.

    Article  Google Scholar 

  • Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., Northrop, J., Ringlod, G. M., & Danielsen, M. (1987). Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proceedings of the National Academy of Sciences, 84(21), 7413–7417.

    Article  ADS  Google Scholar 

  • Fletcher, P. D. I., & Horsup, D. I. (1992). Droplet dynamics in water-in-oil microemulsions and macroemulsions stabilized by nonionic surfactants – Correlation of measured rates with monolayer bending elasticity. Journal of the Chemical Society-Faraday Transactions, 88(6), 855–864. https://doi.org/10.1039/ft9928800855.

    Article  Google Scholar 

  • Goddard, E. D., & Ananthapadmanabhan, K. P. (1992). Interaction of surfactants with polymers and proteins. In J. C. T. Kwak (Ed.), Polymer-surfactant systems. Boca Raton: CRC Press.

    Google Scholar 

  • Gompper, G., & Schick, M. (1990a). Correlation between structural and interfacial properties of amphiphilic systems. Physical Review Letters, 65(9), 1116–1119.

    Article  ADS  Google Scholar 

  • Gompper, G., & Schick, M. (1990b). Lattice model of microemulsions. Physical Review B, 41(13), 9148–9162.

    Article  ADS  Google Scholar 

  • Gradzielski, M., Hoffmann, H., & Langevin, D. (1995). Solubilization of decane into the ternary-system TDMAO/1-hexanol/water. Journal of Physical Chemistry, 99(33), 12612–12623. https://doi.org/10.1021/j100033a039.

    Article  Google Scholar 

  • Gradzielski, M., Langevin, D., & Farago, B. (1996a). Experimental investigation of the structure of nonionic microemulsions and their relation to the bending elasticity of the amphiphilic film. Physical Review E, 53(4), 3900–3919.

    Article  ADS  Google Scholar 

  • radzielski, M., Langevin, D., Sottmann, T., & Strey, R. (1996b). Small angle neutron scattering near the wetting transition: Discrimination of microemulsions from weakly structured mixtures. Journal of Chemical Physics, 104(10), 3782–3787.

    Google Scholar 

  • Guering, P., Cazabat, A. M., & Paillette, M. (1986). Droplets clustering in microemulsions – An electric-birefringence study. Europhysics Letters, 2(12), 953–960.

    Article  ADS  Google Scholar 

  • Hellweg, T., & Langevin, D. (1998). Bending elasticity of the surfactant monolayer in droplet microemulsions: Determination by a combination of dynamic light scattering and neutron spin-echo spectroscopy. Physical Review E, 57(6), 6825–6834.

    Article  ADS  Google Scholar 

  • Hellweg, T., & Langevin, D. (1999). The dynamics in dodecane/C10E5/water microemulsions determined by time resolved scattering techniques. Physica A-Statistical Mechanics and Its Applications, 264(3–4), 370–387.

    Article  ADS  Google Scholar 

  • Hellweg, T., Brulet, A., & Sottmann, T. (2000). Dynamics in an oil-continuous droplet microemulsion as seen by quasielastic scattering techniques. Physical Chemistry Chemical Physics, 2(22), 5168–5174. https://doi.org/10.1039/b005088l.

    Article  Google Scholar 

  • Hoffmann, H., & Ulbricht, W. (1989). Transition of rodlike to globular micelles by the solubilisation of additives. Journal of Colloid and Interface Science, 129(2), 388–405.

    Article  ADS  Google Scholar 

  • Holmberg, K. (1994). Organic and bioorganic reactions in microemulsions. Advances in Colloid and Interface Science, 51, 137–174. https://doi.org/10.1016/0001-8686(94)80035-9.

    Article  Google Scholar 

  • Ilekti, P., Martin, T., Cabane, B., & Piculell, L. (1999). Effects of polyelectrolytes on the structures and interactions of surfactant aggregates. The Journal of Physical Chemistry B, 103(45), 9831–9840. https://doi.org/10.1021/jp991259a.

    Article  Google Scholar 

  • Israelachvili, J. (1992). Intermolecular and surface forces (2nd ed.). San Diego: Academic.

    Google Scholar 

  • Israelachvili, J. N., Mitchell, D. J., & Ninham, B. W. (1976). Theory of self assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society-Faraday Transactions II, 72, 1525–1568.

    Article  Google Scholar 

  • Jones, P., Wyn-Jones, E., & Tiddy, G. J. (1987). Kinetic and equilibrium studies associated with the aggregation of non-ionic surfactants in non-polar solvents. Journal of the Chemical Society, Faraday Transactions 1, 83(9), 2735–2749.

    Article  Google Scholar 

  • Kahlweit, M. (1982). Kinetics of formation of association colloids. Journal of Colloid and Interface Science, 90(1), 92–99.

    Article  ADS  Google Scholar 

  • Kahlweit, M., Strey, R., & Firman, P. (1986). Search for tricritical points in ternary systems water-oil-nonionic amphiphile. Journal of Physical Chemistry, 90(4), 671–677.

    Article  Google Scholar 

  • Kaler, E. W., Herrington, K. L., Murthy, A. K., & Zasadzinski, J. A. N. (1992). Phase behaviour and structures of mixtures of anionic and cationic surfactants. Journal of Physical Chemistry, 96(16), 6698–6707.

    Article  Google Scholar 

  • Kosmella, S., & Koetz, J. (2012). Polymer-modified w/o microemulsions – With tunable droplet-droplet interactions. Current Opinion in Colloid & Interface Science, 17(5), 261–265. https://doi.org/10.1016/j.cocis.2012.06.004.

    Article  Google Scholar 

  • Kotlarchyk, M., Huang, J. S., & Chen, S. H. (1985). Structure of AOT reversed micelles determined by small-angle neutron scattering. The Journal of Physical Chemistry, 89(20), 4382–4386.

    Article  Google Scholar 

  • Kumar, A., Kushwaha, V., & Sharma, P. K. (2014). Pharmaceutical microemulsion: Formulation, characterization and drug deliveries across skin. International Journal of Drug Development and Research, 6, 1), 1–1),21.

    Google Scholar 

  • Kunieda, H., & Shinoda, K. (1985). Evaluation of the hydrophile-lipophile balance (HLB) of nonionic surfactants. I. Multisurfactant systems. Journal of Colloid and Interface Science, 107(1), 107–121. https://doi.org/10.1016/0021-9797(85)90154-7.

    Article  ADS  Google Scholar 

  • Kwak, J. C. T. (Ed.). (1998). Polymer-surfactant systems (Vol. 77). New York/Basel: Marcel Dekker.

    Google Scholar 

  • Lang, J., Jada, A., & Malliaris, A. (1988). Structure and dynamics of water-in-oil droplets stabilized by sodium bis (2-ethylhexyl) sulfosuccinate. The Journal of Physical Chemistry, 92(7), 1946–1953.

    Article  Google Scholar 

  • Langevin, D. (2009). Complexation of oppositely charged polyelectrolytes and surfactants in aqueous solutions. A review. Advances in Colloid and Interface Science, 147-48, 170–177. https://doi.org/10.1016/j.cis.2008.08.013.

    Article  Google Scholar 

  • Lattes, A., & Rico, I. (1989). Aggregation in formamide solution: Reactivity and structure of non-aqueous microemulsions. Colloids and Surfaces, 35(2), 221–235.

    Article  Google Scholar 

  • Leitao, H., Somoza, A. M., daGama, M. M. T., Sottmann, T., & Strey, R. (1996). Scaling of the interfacial tension of microemulsions: A phenomenological description. Journal of Chemical Physics, 105(7), 2875–2883. https://doi.org/10.1063/1.472149.

    Article  ADS  Google Scholar 

  • Lin, Y.-J., Perrard, A., Biswal, S. L., Hill, R. M., & Trabelsi, S. (2018). Microfluidic investigation of asphaltenes-stabilized water-in-oil emulsions. Energy & Fuels, 32(4), 4903–4910.

    Article  Google Scholar 

  • Lu, J. R., Purcell, I. P., Lee, E. M., Simister, E. A., Thomas, R. K., Rennie, A. R., & Penfold, J. (1995). The composition and structure of sodium dodecyl-sulfate dodecanol mixtures adsorbed at the air-water-interface – A neutron reflection study. Journal of Colloid and Interface Science, 174(2), 441–455. https://doi.org/10.1006/jcis.1995.1412.

    Article  ADS  Google Scholar 

  • McLoughlin, D., Delsanti, M., Tribet, C., & Langevin, D. (2005). DNA bundle formation induced by cationic surfactants. Europhysics Letters, 69(3), 461–467. https://doi.org/10.1209/epl/i2004-10367-2.

    Article  ADS  Google Scholar 

  • McManus, J. J., Rädler, J. O., & Dawson, K. A. (2004). Observation of a rectangular columnar phase in a DNA−calcium−zwitterionic lipid complex. Journal of the American Chemical Society, 126(49), 15966–15967. https://doi.org/10.1021/ja046105+.

    Article  Google Scholar 

  • Meunier, J. (1992). Light reflectivity and ellipsometry. In D. Langevin (Ed.), Light scattering by liquid surfaces and complementary techniques (pp. 333–364). New York: Dekker, M.

    Google Scholar 

  • Meunier, J., & Langevin, D. (1982). Optical reflectivity of a diffuse interface. Journal de Physique Lettres, 43(6), L185–L191.

    Article  Google Scholar 

  • Mihailescu, M., Monkenbusch, M., Endo, H., Allgaier, J., Gompper, G., Stellbrink, J., Richeter, D., Jakobs, B., Sottman, T., & Farago, B. (2001). Dynamics of bicontinuous microemulsion phases with and without amphiphilic block-copolymers. Journal of Chemical Physics, 115(20), 9563–9577. https://doi.org/10.1063/1.1413509.

    Article  ADS  Google Scholar 

  • Moldover, M. R. (1985). Interfacial-tension of fluids near critical-points and 2-scale-factor universality. Physical Review A, 31(2), 1022–1033. https://doi.org/10.1103/PhysRevA.31.1022.

    Article  ADS  Google Scholar 

  • Mullins, O. C. (2010). The modified yen model. Energy & Fuels, 24, 2179–2207. https://doi.org/10.1021/ef900975e.

    Article  Google Scholar 

  • Nagarajan, R. (Ed.). (2019). Self assembly. From surfactants to nanoparticles. New York: Wiley.

    Google Scholar 

  • Nazar, M. F., Shah, S. S., & Khosa, M. A. (2011). Microemulsions in enhanced oil recovery: A review. Petroleum Science and Technology, 29(13), 1353–1365. https://doi.org/10.1080/10916460903502514.

    Article  Google Scholar 

  • Patist, A., Kanicky, J. R., Shukla, P. K., & Shah, D. O. (2002). Importance of micellar kinetics in relation to technological processes. Journal of Colloid and Interface Science, 245(1), 1–15. https://doi.org/10.1006/jcis.2001.7955.

    Article  ADS  Google Scholar 

  • Peliti, L., & Leibler, S. (1985). Effects of thermal fluctuations on systems with small surface tension. Physical Review Letters, 54(15), 1690–1693.

    Article  ADS  Google Scholar 

  • Piculell, L., & Lindman, B. (1992). Association and segregation in aqueous polymer/polymer, polymer/surfactant, and surfactant/surfactant mixtures: similarities and differences. Advances in Colloid and Interface Science, 41, 149–178. https://doi.org/10.1016/0001-8686(92)80011-L.

    Article  Google Scholar 

  • Pileni, M. P. (1997). Nanosized Particles Made in Colloidal Assemblies. Langmuir, 13(13), 3266–3276. https://doi.org/10.1021/la960319q.

    Article  Google Scholar 

  • Porte, G., Appell, J., Bassereau, P., & Marignan, J. (1989). L-alpha to L3 – A topology driven transition in phases of infinite fluid membranes. Journal de Physique, 50(11), 1335–1347.

    Article  Google Scholar 

  • Pouchelon, A., Chatenay, D., Meunier, J., & Langevin, D. (1981). Origin of low interfacial-tensions in systems involving micro-emulsion phases. Journal of Colloid and Interface Science, 82(2), 418–422. https://doi.org/10.1016/0021-9797(81)90383-0.

    Article  ADS  Google Scholar 

  • Prince, L. M. (Ed.). (1977). Microemulsions. New York: Academic.

    Google Scholar 

  • Quemada, D., & Langevin, D. (1985). Rheological modeling of microemulsions. [Article]. Journal de Mécanique Theorique et Appliquée, 201–237.

    Google Scholar 

  • Ramadan, M. S., Evans, D. F., & Lumry, R. (1983). Why micelles form in water and hydrazine. A reexamination of the origins of hydrophobicity. The Journal of Physical Chemistry, 87(22), 4538–4543.

    Article  Google Scholar 

  • Riess, J. G. (2002). Fluorous micro- and nanophases with a biomedical perspective. Tetrahedron, 58(20), 4113–4131. https://doi.org/10.1016/s0040-4020(02)00262-4.

    Article  Google Scholar 

  • Rubinstein, M., & Colby, R. H. (2003). Polymer physics. New York: Oxford University Press.

    Google Scholar 

  • Safinya, C., Sirota, E., Roux, D., & Smith, G. (1989). Universality in interacting membranes: The effect of cosurfactants on the interfacial rigidity. Physical Review Letters, 62(10), 1134.

    Article  ADS  Google Scholar 

  • Safran, S. A. (1994). Fluctuating interfaces and the structure of microemulsions. In W. M. Gelbart, A. Ben-Shaul, & D. Roux (Eds.), Micelles, membranes, microemulsions and monolayers (pp. 427–484). New York: Springer.

    Chapter  Google Scholar 

  • Safran, S. A., Turkevich, L. A., & Pincus, P. (1984). Cylindrical microemulsions – A polymer-like phase. Journal de Physique Lettres, 45(2), L69–L74.

    Article  Google Scholar 

  • Salager, J. L., Marquez, L., Pena, A. A., Rondon, M., Silva, F., & Tyrode, E. (2000). Current phenomenological know-how and modeling of emulsion inversion. Industrial & Engineering Chemistry Research, 39(8), 2665–2676. https://doi.org/10.1021/ie990778x.

    Article  Google Scholar 

  • Salager, J.-L., Antón, R. E., Andérez, J. M., & Aubry, J.-M. (2001). Formulation des micro-émulsions par la méthode HLD. In Techniques de l’Ingénieur(J2 157) (pp. 1–20).

    Google Scholar 

  • Schurtenberger, P., Magid, L., King, S., & Lindner, P. (1991). Cylindrical structure and flexibility of polymerlike lecithin reverse micelles. The Journal of Physical Chemistry, 95(11), 4173–4176.

    Article  Google Scholar 

  • Schwuger, M. J., Stickdorn, K., & Schomacker, R. (1995). Microemulsions in technical processes. Chemical Reviews, 95(4), 849–864. https://doi.org/10.1021/cr00036a003.

    Article  Google Scholar 

  • Skouri, M., Marignan, J., Appell, J., & Porte, G. (1991). Fluid membranes in the semirigid regime – Scale-invariance. Journal de Physique II, 1(9), 1121–1132.

    Article  ADS  Google Scholar 

  • Sottmann, T., & Strey, R. (1997). Ultralow interfacial tensions in water–n-alkane–surfactant systems. The Journal of Chemical Physics, 106(20), 8606–8615.

    Article  ADS  Google Scholar 

  • Strey, R. (1994). Microemulsion microstructure and interfacial curvature. Colloid and Polymer Science, 272(8), 1005–1019.

    Article  Google Scholar 

  • Stubenrauch, C., & Gießelmann, F. (2016). Gelled complex fluids: Combining unique structures with mechanical stability. Angewandte Chemie International Edition, 55(10), 3268–3275.

    Article  Google Scholar 

  • Stubenrauch, C., Tessendorf, R., Strey, R., Lynch, I., & Dawson, K. A. (2007). Gelled polymerizable microemulsions. 1. Phase behavior. Langmuir, 23(14), 7730–7737.

    Article  Google Scholar 

  • Talmon, Y., & Prager, S. (1978). Statistical thermodynamics of phase equilibria in microemulsions. Journal of Chemical Physics, 69, 2984–2992.

    Article  ADS  Google Scholar 

  • Tanford, C. (1980). The hydrophobic effect (2nd ed.). New York: Wiley.

    Google Scholar 

  • Teubner, M., & Strey, R. (1987). Origin of the scattering peak in microemulsions. Journal of Chemical Physics, 87(5), 3195–3200.

    Article  ADS  Google Scholar 

  • Tresset, G., Cheong, W. C. D., Tan, Y. L. S., Boulaire, J., & Lam, Y. M. (2007). Phospholipid-based artificial viruses assembled by multivalent cations. Biophysical Journal, 93(2), 637–644. https://doi.org/10.1529/biophysj.107.104448.

    Article  ADS  Google Scholar 

  • Walde, P., Cosentino, K., Engel, H., & Stano, P. (2010). Giant vesicles: Preparations and applications. ChemBioChem, 11(7), 848–865.

    Article  Google Scholar 

  • Wang, Z.-G., & Safran, S. A. (1990). Equilibrium emulsification of polymer blends by diblock copolymers. Journal de Physique, 51(2), 185–200.

    Article  Google Scholar 

  • Watarai, H. (1997). Microemulsions in separation sciences. Journal of Chromatography A, 780(1–2), 93–102. https://doi.org/10.1016/s0021-9673(97)00444-5.

    Article  Google Scholar 

  • Widom, B. (1986). Lattice model of microemulsions. Journal of Chemical Physics, 84(12), 6943–6954.

    Article  ADS  Google Scholar 

  • Winsor, P. A. (1954). Solvent properties of amphiphilic compounds. London: Butterworth.

    Google Scholar 

  • Zana, R. (2002). Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: A review. Advances in Colloid and Interface Science, 97(1–3), 205–253.

    Article  Google Scholar 

  • Zana, R., & Lang, J. (1987). Chemical relaxation methods. In R. Zana (Ed.), Surfactant solutions (Vol. 22, pp. 405–452). New York/Basel: Dekker, M.

    Google Scholar 

  • Zemb, T. N. (1997). The DOC model of microemulsions: Microstructure, scattering, conductivity and phase limits imposed by sterical constraints. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 129, 435–454. https://doi.org/10.1016/s0927-7757(97)00061-7.

    Article  Google Scholar 

  • Zemb, T. N., Hyde, S. T., Derian, P. J., Barnes, I. S., & Ninham, B. W. (1987). Microstructure from X-ray scattering – The disordered open connected model of microemulsions. Journal of Physical Chemistry, 91(14), 3814–3820.

    Article  Google Scholar 

  • Zemb, T., Dubois, M., Deme, B., & Gulik-Krzywicki, T. (1999). Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions. Science, 283(5403), 816–819.

    Article  ADS  Google Scholar 

  • Zilman, A. G., & Granek, R. (1999). Undulation instability of lamellar phases under shear: A mechanism for onion formation? European Physical Journal B, 11(4), 593–608. https://doi.org/10.1007/s100510051187.

    Article  ADS  Google Scholar 

  • Zohuriaan-Mehr, M. J., & Kabiri, K. (2008). Superabsorbent polymer materials: A review. Iranian Polymer Journal, 17(6), 451–477.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Langevin, D. (2020). Self-Assembly in Bulk. In: Emulsions, Microemulsions and Foams. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-030-55681-5_3

Download citation

Publish with us

Policies and ethics