Skip to main content

Interfaces Between Two Fluids

  • Chapter
  • First Online:
Emulsions, Microemulsions and Foams

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

The three types of dispersions, emulsions, microemulsions, and foams, are all stabilized by adsorbed layers of surface-active substances. The role of these layers will be discussed at length, because they are central in the behavior of dispersions. Adsorption layers make the link between the different dispersions; they are at the origin of numerous similarities encountered between them. The basic knowledge will be recalled in this chapter, starting with the simplest case of interfaces between pure fluids. More details can be found in classical textbooks (Adamson and Gast 1997; Evans and Wennerström 1999; de Gennes et al. 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson, A. W., & Gast, A. P. (1997). Physical chemistry of surfaces (6th ed.). New York: Wiley.

    Google Scholar 

  • Alexandrov, N. A., Marinova, K. G., Gurkov, T. D., Danov, K. D., Kralchevsky, P. A., Stoyanov, S. D., Blijdenstein, T. B., Arnaudov, L. N., Pelan, E. G., & Lips, A. (2012). Interfacial layers from the protein HFBII hydrophobin: Dynamic surface tension, dilatational elasticity and relaxation times. Journal of Colloid and Interface Science, 376, 296–306. https://doi.org/10.1016/j.jcis.2012.03.031.

    Article  ADS  Google Scholar 

  • Alvarez, G., Poteau, S., Argillier, J.-F., Langevin, D., & Salager, J.-L. (2009). Heavy oil-water interfacial properties and emulsion stability: Influence of dilution. Energy & Fuels, 23(1), 294–299. https://doi.org/10.1021/ef800545k.

    Article  Google Scholar 

  • Andelman, D., Brochard, F., Knobler, C., & Rondelez, F. (1994). Structure and phase transitions in monolayers. In W. M. Gelbart, A. Ben-Shaul, & D. Roux (Eds.), Micelles, membranes, microemulsions and monolayers (pp. 559–602). New York: Springer.

    Chapter  Google Scholar 

  • Arriaga, L. R., Drenckhan, W., Salonen, A., Rodrigues, J. A., Iniguez-Palomares, R., Rio, E., & Langevin, D. (2012a). On the long-term stability of foams stabilised by mixtures of nano-particles and oppositely charged short chain surfactants. Soft Matter, 8(43), 11085–11097. https://doi.org/10.1039/c2sm26461g.

    Article  ADS  Google Scholar 

  • Arriaga, L. R., Monroy, F., & Langevin, D. (2012b). The polymer glass transition in nanometric films. European Physics Letters, 98(3), 38007. https://doi.org/10.1209/0295-5075/98/38007.

    Article  ADS  Google Scholar 

  • Arriaga, L. R., Varade, D., Carriere, D., Drenckhan, W., & Langevin, D. (2013). Adsorption, organization, and rheology of catanionic layers at the air/water interface. Langmuir, 29(10), 3214–3222. https://doi.org/10.1021/la304868n.

    Article  Google Scholar 

  • Aumaitre, E., Vella, D., & Cicuta, P. (2011). On the measurement of the surface pressure in Langmuir films with finite shear elasticity. Soft Matter, 7(6), 2530–2537. https://doi.org/10.1039/c0sm01213k.

    Article  ADS  Google Scholar 

  • Bain, C. D. (2008). The overflowing cylinder sixty years on. Advances in Colloid and Interface Science, 144(1–2), 4–12. https://doi.org/10.1016/j.cis.2008.08.006.

    Article  Google Scholar 

  • Bain, C. D., Claesson, P. M., Langevin, D., Meszaros, R., Nylander, T., Stubenrauch, C., Titmuss, S., & von Klitzing, R. (2010). Complexes of surfactants with oppositely charged polymers at surfaces and in bulk. Advances in Colloid and Interface Science, 155(1–2), 32–49. https://doi.org/10.1016/j.cis.2010.01.007.

    Article  Google Scholar 

  • Barthès-Biesel, D., Diaz, A., & Dhenin, E. (2002). Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation. Journal of Fluid Mechanics, 460, 211–222. https://doi.org/10.1017/s0022112002008352.

    Article  ADS  MATH  Google Scholar 

  • Benjamins, J., Feijter, J. A. D., Evans, M. T. A., Graham, D. E., & Phillips, M. C. (1975). Dynamic and static properties of proteins adsorbed at air-water-interface. Faraday Discussions, 59, 218–229. https://doi.org/10.1039/dc9755900218.

    Article  Google Scholar 

  • Bernardini, C., Stoyanov, S. D., Arnaudov, L. N., & Stuart, M. A. C. (2013). Colloids in Flatland: A perspective on 2D phase-separated systems, characterisation methods, and lineactant design. Chemical Society Reviews, 42(5), 2100–2129. https://doi.org/10.1039/c2cs35269a.

    Article  Google Scholar 

  • Binks, B. P. (2007). Colloidal particles at liquid interfaces. Physical Chemistry Chemical Physics, 9(48), 6298–6299. https://doi.org/10.1039/b716587k.

    Article  Google Scholar 

  • Blijdenstein, T. B. J., de Groot, P. W. N., & Stoyanov, S. D. (2010). On the link between foam coarsening and surface rheology: Why hydrophobins are so different. Soft Matter, 6(8), 1799–1808. https://doi.org/10.1039/b925648b.

    Article  ADS  Google Scholar 

  • Bonfillon, A., Sicoli, F., & Langevin, D. (1994). Dynamic surface tension of ionic surfactant solutions [Article]. Journal of Colloid and Interface Science, 168(2), 497–504.

    Article  ADS  Google Scholar 

  • Boussinesq, J. (1913). On the existence of a superficial viscosity grade, in the thin layer of transition which separates a liquid from another adjacent fluid. Annales de Chimie et de Physique, 29, 349–357.

    Google Scholar 

  • Braslau, A., Deutsch, M., Pershan, P. S., Weiss, A. H., Alsnielsen, J., & Bohr, J. (1985). Surface-roughness of water measured by x-ray reflectivity. Physical Review Letters, 54(2), 114–117. https://doi.org/10.1103/PhysRevLett.54.114.

    Article  ADS  Google Scholar 

  • Brosseau, Q., Vrignon, J., & Baret, J. C. (2014). Microfluidic dynamic interfacial tensiometry (μ DIT). Soft Matter, 10(17), 3066–3076. https://doi.org/10.1039/c3sm52543k.

    Article  ADS  Google Scholar 

  • Buff, F. P., Lovett, R. A., & Stillinger, F. H. (1965). Interfacial density profile for fluids in critical region. Physical Review Letters, 15(15), 621–623. https://doi.org/10.1103/PhysRevLett.15.621.

    Article  ADS  Google Scholar 

  • Cagna, A., Esposito, G., Quinquis, A. S., & Langevin, D. (2018). On the reversibility of asphaltene adsorption at oil-water interfaces. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 548, 46–53. https://doi.org/10.1016/j.colsurfa.2018.03.038.

    Article  Google Scholar 

  • Caruso, B., Mangiarotti, A., & Wilke, N. (2013). Stiffness of lipid monolayers with phase coexistence. Langmuir, 29(34), 10807–10816. https://doi.org/10.1021/la4018322.

    Article  Google Scholar 

  • Checco, A., Guenoun, P., & Daillant, J. (2003). Nonlinear dependence of the contact angle of nanodroplets on contact line curvature. Physical Review Letters, 91(18). https://doi.org/10.1103/PhysRevLett.91.186101.

  • Cohen-Stuart, M. A., & Kleijn, J. M. (2001). Kinetics of polyelectrolyte adsorption. In T. Radeva (Ed.), Physical chemistry of polyelectrolytes (pp. 281–304). New York: Marcel Dekker.

    Google Scholar 

  • Colegate, D. M., & Bain, C. D. (2005). Adsorption kinetics in micellar solutions of nonionic surfactants. Physical Review Letters, 95(19), 198302. https://doi.org/10.1103/PhysRevLett.95.198302.

    Article  ADS  Google Scholar 

  • Danov, K. D., Radulova, G. M., Kralchevsky, P. A., Golemanov, K., & Stoyanov, S. D. (2012). Surface shear rheology of hydrophobin adsorption layers: Laws of viscoelastic behaviour with applications to long-term foam stability. Faraday Discussions, 158, 195–221. https://doi.org/10.1039/c2fd20017a.

    Article  ADS  Google Scholar 

  • de Gennes, P. G. (1979). Scaling concepts in polymers physics. Ithaca: Cornell University Press.

    Google Scholar 

  • de Gennes, P. G. (1987). Polymers at an interface – A simplified view. Advances in Colloid and Interface Science, 27(3–4), 189–209. https://doi.org/10.1016/0001-8686(87)85003-0.

    Article  Google Scholar 

  • de Gennes, P.-G., Brochard-Wyart, F., & Quéré, D. (2004). Capillarity and wetting phenomena. New York: Springer.

    Book  MATH  Google Scholar 

  • Diamant, H., & Andelman, D. (1996). Kinetics of surfactant adsorption at fluid-fluid interfaces. Journal of Physical Chemistry, 100(32), 13732–13742.

    Article  Google Scholar 

  • Dickinson, E. (1998). Proteins at interfaces and in emulsions – Stability, rheology and interactions. Journal of the Chemical Society-Faraday Transactions, 94(12), 1657–1669. https://doi.org/10.1039/a801167b.

    Article  Google Scholar 

  • Dickinson, E. (1999). Adsorbed protein layers at fluid interfaces: Interactions, structure and surface rheology. Colloids and Surfaces B-Biointerfaces, 15(2), 161–176. https://doi.org/10.1016/s0927-7765(99)00042-9.

    Article  Google Scholar 

  • Dillmann, P., Maret, G., & Keim, P. (2012). Comparison of 2D melting criteria in a colloidal system. [Article]. Journal of Physics-Condensed Matter, 24(46), 464118. https://doi.org/10.1088/0953-8984/24/46/464118.

    Article  ADS  Google Scholar 

  • Dimitrijev-Dwyer, M., & Middelberg, A. P. J. (2011). The extensional viscoelasticity of protein-coated interfaces. Soft Matter, 7(17), 7772–7781. https://doi.org/10.1039/c1sm05253e.

    Article  ADS  Google Scholar 

  • Djabbarah, N. F., & Wasan, D. T. (1982). Dilational viscoelastic properties of fluid interfaces. 3. Mixed surfactant systems. Chemical Engineering Science, 37(2), 175–184. https://doi.org/10.1016/0009-2509(82)80152-8.

    Article  Google Scholar 

  • Edwards, D. A., Brenner, H., & Wasan, D. T. (1991). Interfacial transport processes and rheology. Butterworth-Heinemann.

    Google Scholar 

  • Erwin, B. M., Rogers, S. A., Cloitre, M., & Vlassopoulos, D. (2010). Examining the validity of strain-rate frequency superposition when measuring the linear viscoelastic properties of soft materials. Journal of Rheology, 54(2), 187–195. https://doi.org/10.1122/1.3301247.

    Article  ADS  Google Scholar 

  • Ese, M. H., Galet, L., Clausse, D., & Sjoblom, J. (1999). Properties of Langmuir surface and interfacial films built up by asphaltenes and resins: Influence of chemical demulsifiers. Journal of Colloid and Interface Science, 220(2), 293–301. https://doi.org/10.1006/jcis.1999.6549.

    Article  ADS  Google Scholar 

  • Espinosa, G., & Langevin, D. (2009). Interfacial shear rheology of mixed polyelectrolyte-surfactant layers. Langmuir, 25(20), 12201–12207. https://doi.org/10.1021/la901730f.

    Article  Google Scholar 

  • Evans, F., & Wennerström, W. (1999). The colloidal domain (2nd ed.). New York: Wiley.

    Google Scholar 

  • Evans, E., Rawicz, W., & Smith, B. A. (2013). Concluding remarks back to the future: Mechanics and thermodynamics of lipid biomembranes. Faraday Discussions, 161(0), 591–611. https://doi.org/10.1039/c2fd20127e.

    Article  ADS  Google Scholar 

  • Franklin, B. (1773). From Benjamin Franklin to William Brownrigg, 7 November 1773. https://founders.archives.gov/documents/Franklin/01-20-02-0250. [Original source:The Papers of Benjamin Franklin , Vol. 20, January 1 through December 31, 1773, New Haven and London: Yale University Press, 1976, pp. 463–474.]

  • Freer, E. M., Yim, K. S., Fuller, G. G., & Radke, C. J. (2004). Interfacial rheology of globular and flexible proteins at the hexadecane/water interface: Comparison of shear and dilatation deformation. Journal of Physical Chemistry B, 108(12), 3835–3844. https://doi.org/10.1021/jp037236k.

    Article  Google Scholar 

  • Freer, E. M., Wong, H., & Radke, C. J. (2005). Oscillating drop/bubble tensiometry: Effect of viscous forces on the measurement of interfacial tension. Journal of Colloid and Interface Science, 282(1), 128–132. https://doi.org/10.1016/j.jcis.2004.08.058.

    Article  ADS  Google Scholar 

  • Fuller, G. G., & Vermant, J. (2012). Complex fluid-fluid interfaces: Rheology and structure. In J. M. Prausnitz (Ed.), Annual review of chemical and biomolecular engineering (Vol. 3, pp. 519–543).

    Google Scholar 

  • Gaines, G. (1966). Insoluble monolayers at liquid-gas interfaces. New York: Interscience.

    Google Scholar 

  • Georgieva, D., Cagna, A., & Langevin, D. (2009a). Link between surface elasticity and foam stability. Soft Matter, 5(10), 2063–2071. https://doi.org/10.1039/b822568k.

    Article  ADS  Google Scholar 

  • Georgieva, D., Schmitt, V., Leal-Calderon, F., & Langevin, D. (2009b). On the possible role of surface elasticity in emulsion stability. Langmuir, 25(10), 5565–5573. https://doi.org/10.1021/la804240e.

    Article  Google Scholar 

  • Gibbs, J. W. (1928). The collected works (Vol. 1). London: Longmans, Green and co.

    MATH  Google Scholar 

  • Golemanov, K., Denkov, N. D., Tcholakova, S., Vethamuthu, M., & Lips, A. (2008a). Surfactant mixtures for control of bubble surface mobility in foam studies. Langmuir, 24(18), 9956–9961. https://doi.org/10.1021/la8015386.

    Article  Google Scholar 

  • Golemanov, K., Tcholakova, S., Denkov, N., Ananthapadmanabhan, K., & Lips, A. (2008b). Breakup of bubbles and drops in steadily sheared foams and concentrated emulsions. Physical Review E, 78(5), 051405.

    Article  ADS  Google Scholar 

  • Goodrich, F. C. (1981). The theory of capillary excess viscosities. Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 374(1758), 341–370.

    ADS  MathSciNet  MATH  Google Scholar 

  • Gourier, C., Daillant, J., Braslau, A., Alba, M., Quinn, K., Luzet, D., Blot, C., Chatenay, D., Grübel, G., Legrand, J.-F., & Vignaud, G. (1997). Bending energy of amphiphilic films at the nanometer scale. Physical Review Letters, 78(16), 3157–3160.

    Article  ADS  Google Scholar 

  • Hauner, I. M., Deblais, A., Beattie, J. K., Kellay, H., & Bonn, D. (2017). The dynamic surface tension of water. Journal of Physical Chemistry Letters, 8(7), 1599–1603. https://doi.org/10.1021/acs.jpclett.7b00267.

    Article  Google Scholar 

  • He, Y., Shang, Y., Liu, H., Langevin, D., & Salonen, A. (2012). Surfactant adsorption onto interfaces: Measuring the surface excess in time. Langmuir, 28(6), 3146–3151. https://doi.org/10.1021/la2047454.

    Article  Google Scholar 

  • He, Y., Yazhgur, P., Salonen, A., & Langevin, D. (2015). Adsorption-desorption kinetics of surfactants at liquid surfaces. Advances in Colloid and Interface Science, 222, 377–384. https://doi.org/10.1016/j.cis.2014.09.002.

    Article  Google Scholar 

  • Hegemann, J., Knoche, S., Egger, S., Kott, M., Demand, S., Unverfehrt, A., Regage, H., & Kierfeld, J. (2018). Pendant capsule elastometry. Journal of Colloid and Interface Science, 513, 549–565. https://doi.org/10.1016/j.jcis.2017.11.048.

    Article  ADS  Google Scholar 

  • Helfrich, W. (1973). Elastic properties of lipid bilayers – Theory and possible experiments. Zeitschrift Fur Naturforschung C-A Journal of Biosciences, C, 28(11–1), 693–703.

    Article  Google Scholar 

  • Horozov, T. S., Binks, B. P., Aveyard, R., & Clint, J. H. (2006). Effect of particle hydrophobicity on the formatlon and collapse of fumed silica particle monolayers at the oil-water interface. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 282, 377–386. https://doi.org/10.1016/j.colsurfa.2005.11.085.

    Article  Google Scholar 

  • Hotrum, N. E., Stuart, M. A. C., van Vliet, T., & van Aken, G. A. (2003). Flow and fracture phenomena in adsorbed protein layers at the air/water interface in connection with spreading oil droplets. Langmuir, 19(24), 10210–10216. https://doi.org/10.1021/la035188p.

    Article  Google Scholar 

  • Israelachvili, J. N., Mitchell, D. J., & Ninham, B. W. (1976). Theory of self assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society-Faraday Transactions II, 72, 1525–1568.

    Article  Google Scholar 

  • Jaensson, N., & Vermant, J. (2018). Tensiometry and rheology of complex interfaces. Current Opinion in Colloid & Interface Science, 37, 136–150. https://doi.org/10.1016/j.cocis.2018.09.005.

    Article  Google Scholar 

  • Jayalakshmi, Y., Ozanne, L., & Langevin, D. (1995). Viscoelasticity of surfactant monolayers. Journal of Colloid and Interface Science, 170(2), 358–366.

    Article  ADS  Google Scholar 

  • Jeribi, M., Almir-Assad, B., Langevin, D., Henaut, I., & Argillier, J. F. (2002). Adsorption kinetics of asphaltenes at liquid interfaces. Journal of Colloid and Interface Science, 256(2), 268–272. https://doi.org/10.1006/jcis.2002.8660.

    Article  ADS  Google Scholar 

  • Joly, M. (1964). Chapter 1 – Surface Viscosity. In J. F. Danielli, K. G. A. Pankhurst, & A. C. Riddiford (Eds.), Recent progress in surface science (Vol. 1, pp. 1–50). Elsevier.

    Google Scholar 

  • Kim, Y. H., & Wasan, D. T. (1996). Effect of demulsifier partitioning on the destabilization of water-in-oil emulsions. Industrial & Engineering Chemistry Research, 35(4), 1141–1149. https://doi.org/10.1021/ie950372u.

    Article  Google Scholar 

  • Klix, C. L., Maret, G., & Keim, P. (2015). Discontinuous shear modulus determines the glass transition temperature. Physical Review X, 5(4), 041033. https://doi.org/10.1103/PhysRevX.5.041033.

    Article  ADS  Google Scholar 

  • Knoche, S., Vella, D., Aumaitre, E., Degen, P., Rehage, H., Cicuta, P., & Kierfeld, J. (2013). Elastometry of deflated capsules: Elastic moduli from shape and wrinkle analysis. Langmuir, 29(40), 12463–12471. https://doi.org/10.1021/la402322g.

    Article  Google Scholar 

  • Kovalchuk, V. I., Aksenenko, E. V., Makievski, A. V., Fainerman, V. B., & Miller, R. (2019). Dilational interfacial rheology of tridecyl dimethyl phosphine oxide adsorption layers at the water/hexane interface. Journal of Colloid and Interface Science, 539, 30–37. https://doi.org/10.1016/j.jcis.2018.12.019.

    Article  ADS  Google Scholar 

  • Kramer, L. (1971). Theory of light scattering from fluctuations of membranes and monolayers. Journal of Chemical Physics, 55(5), 2097–2105. https://doi.org/10.1063/1.1676380.

    Article  ADS  Google Scholar 

  • Kwak, J. C. T. (Ed.). (1998). Polymer-surfactant systems (Vol. 77). New York/Basel: Marcel Dekker.

    Google Scholar 

  • Kwan, J. J., & Borden, M. A. (2012). Lipid monolayer collapse and microbubble stability. Advances in Colloid and Interface Science, 183, 82–99. https://doi.org/10.1016/j.cis.2012.08.005.

    Article  Google Scholar 

  • Landau, L., & Lifshitz, E. (1959). Theory of elasticity. Addison Wesley.

    Google Scholar 

  • Landau, L., & Lifshitz, E. M. (1980). Statistical physics, chapter XII. Pergamon Press.

    Google Scholar 

  • Langevin, D. (Ed.). (1992a). Light scattering by liquid surfaces and complementary techniques. New York: Marcel Dekker.

    Google Scholar 

  • Langevin, D. (1992b). Adsorbed monolayers. In D. Langevin (Ed.), Light scattering by liquid surfaces and complementary techniques (Vol. 41, pp. 161–201). New York: Marcel Dekker.

    Google Scholar 

  • Langevin, D. (1992c). Multiphase microemulsion systems. In Light scattering by liquid surfaces and complementary techniques (Vol. 41, pp. 233–264). New York: Marcel Dekker.

    Google Scholar 

  • Langevin, D. (1992d). Thin liquid films. In D. Langevin (Ed.), Light scattering by liquid surfaces and complementary techniques (Vol. 41, pp. 265–286). New York: Marcel Dekker.

    Google Scholar 

  • Langevin, D., & Argillier, J. F. (2016). Interfacial behavior of asphaltenes. Advances in Colloid and Interface Science, 233, 83–93. https://doi.org/10.1016/j.cis.2015.10.005.

    Article  Google Scholar 

  • Langevin, D., & Monroy, F. (2010). Interfacial rheology of polyelectrolytes and polymer monolayers at the air-water interface. Current Opinion in Colloid & Interface Science, 15(4), 283–293. https://doi.org/10.1016/j.cocis.2010.02.002.

    Article  Google Scholar 

  • Larson, R. G. (1999). The structure and rheology of complex fluids. New York: Oxford University Press.

    Google Scholar 

  • Lee, L. T., Mann, E. K., Langevin, D., & Farnoux, B. (1991). Neutron reflectivity and ellipsometry studies of a polymer molecular layer spread on the water-surface. Langmuir, 7(12), 3076–3080.

    Article  Google Scholar 

  • Lee, L. T., Mann, E. K., Guiselin, O., Langevin, D., Farnoux, B., & Penfold, J. (1993). Polymer surfactant films at the air-water-interface. 2. A neutron reflectivity study. Macromolecules, 26(25), 7046–7052.

    Article  ADS  Google Scholar 

  • Lee, S., Kim, D. H., & Needham, D. (2001a). Equilibrium and dynamic interfacial tension measurements at microscopic interfaces using a micropipet technique. 1. A new method for determination of interfacial tension. Langmuir, 17(18), 5537–5543. https://doi.org/10.1021/la0103259.

    Article  Google Scholar 

  • Lee, S., Kim, D. H., & Needham, D. (2001b). Equilibrium and dynamic interfacial tension measurements at microscopic interfaces using a micropipet technique. 2. Dynamics of phospholipid monolayer formation and equilibrium tensions at water-air interface. Langmuir, 17(18), 5544–5550. https://doi.org/10.1021/la0103261.

    Article  Google Scholar 

  • Lee, Y. C., Stebe, K. J., Liu, H. S., & Lin, S. Y. (2003). Adsorption and desorption kinetics of CmE8 on impulsively expanded or compressed air-water interfaces. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 220(1–3), 139–150. https://doi.org/10.1016/s0927-7757(03)00075-x.

    Article  Google Scholar 

  • Lemaire, C., & Langevin, D. (1992). Longitudinal surface waves at liquid interfaces. Measurement of monolayer viscoelasticity. Colloids and Surfaces, 65(2–3), 101–112.

    Article  Google Scholar 

  • Levich, V. G. (1962). Physicochemical Hydrodynamics. Englewoods Cliffs: Prentice Hall.

    Google Scholar 

  • Lingwood, D., & Simons, K. (2010). Lipid rafts as a membrane-organizing principle. Science, 327(5961), 46–50. https://doi.org/10.1126/science.1174621.

    Article  ADS  Google Scholar 

  • Lu, J. R., Hromadova, M., Thomas, R. K., & Penfold, J. (1993). Direct determination by neutron reflection of the structure of triethylene glycol monododecyl ether layers at the air/water interface. Langmuir, 9(9), 2417–2425.

    Article  Google Scholar 

  • Lu, J. R., Purcell, I. P., Lee, E. M., Simister, E. A., Thomas, R. K., Rennie, A. R., & Penfold, J. (1995). The composition and structure of sodium dodecyl-sulfate dodecanol mixtures adsorbed at the air-water-interface – A neutron reflection study. Journal of Colloid and Interface Science, 174(2), 441–455. https://doi.org/10.1006/jcis.1995.1412.

    Article  ADS  Google Scholar 

  • Lucassen, J., & Hansen, R. S. (1967). Damping of waves on monolayer-covered surfaces. 2. Influence of bulk-to-surface diffusional interchange on ripple characteristics. Journal of Colloid and Interface Science, 23(3), 319. https://doi.org/10.1016/0021-9797(67)90175-0.

    Article  ADS  Google Scholar 

  • Mackie, A. R., Gunning, A. P., Wilde, P. J., & Morris, V. J. (1999). Orogenic displacement of protein from the air/water interface by competitive adsorption. Journal of Colloid and Interface Science, 210(1), 157–166. https://doi.org/10.1006/jcis.1998.5941.

    Article  ADS  Google Scholar 

  • Maldonado-Valderrama, J., Wege, H. A., Rodriguez-Valverde, M. A., Galvez-Ruiz, M. J., & Cabrerizo-Vilchez, M. A. (2003). Comparative study of adsorbed and spread beta-casein monolayers at the water-air interface with the pendant drop technique. Langmuir, 19(20), 8436–8442. https://doi.org/10.1021/la034242z.

    Article  Google Scholar 

  • Maldonado-Valderrama, J., Galvez-Ruiz, M. J., Martin-Rodriguez, A., & Cabrerizo-Vilchez, M. A. (2004). Adsorbed and spread beta-casein monolayers at oil-water interfaces. Langmuir, 20(15), 6093–6095. https://doi.org/10.1021/la0498307.

    Article  Google Scholar 

  • Mamatkulov, S. I., Allolio, C., Netz, R. R., & Bonthuis, D. J. (2017). Orientation-induced adsorption of hydrated protons at the air-water interface. Angewandte Chemie-International Edition, 56(50), 15846–15851. https://doi.org/10.1002/anie.201707391.

    Article  Google Scholar 

  • Mann, E. K., Henon, S., Langevin, D., & Meunier, J. (1992). Molecular layers of a polymer at the free-water surface – Microscopy at the brewster-angle. Journal de Physique II, 2(9), 1683–1704.

    Article  ADS  Google Scholar 

  • Maru, H. C., & Wasan, D. T. (1979). Dilational viscoelastic properties of fluid interfaces. 2. Experimental study. Chemical Engineering Science, 34(11), 1295–1307.

    Article  Google Scholar 

  • Mecke, K. R., & Dietrich, S. (1999). Effective Hamiltonian for liquid-vapor interfaces. Physical Review E, 59(6), 6766–6784. https://doi.org/10.1103/PhysRevE.59.6766.

    Article  ADS  Google Scholar 

  • Meunier, J. (1992). Light reflectivity and ellipsometry. In D. Langevin (Ed.), Light scattering by liquid surfaces and complementary techniques (pp. 333–364). New York: Dekker, M.

    Google Scholar 

  • Miller, R., Wustneck, R., Kragel, J., & Kretzschmar, G. (1996). Dilational and shear rheology of adsorption layers at liquid interfaces. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 111(1–2), 75–118.

    Google Scholar 

  • Miyano, K. (1992). Externally excited surface waves. In D. Langevin (Ed.), Light scattering by liquid surfaces and complementary techniques (pp. 311–331). New York: Dekker, M.

    Google Scholar 

  • Mora, S., Daillant, J., Mecke, K., Luzet, D., Braslau, A., Alba, M., & Struth, B. (2003). X-ray synchrotron study of liquid-vapor interfaces at short length scales: Effect of long-range forces and bending energies. Physical Review Letters, 90(21), 216101. https://doi.org/10.1103/PhysRevLett.90.216101.

    Article  ADS  Google Scholar 

  • Murray, B. S., & Nelson, P. V. (1996). A novel Langmuir trough for equilibrium and dynamic measurements oil air-water and oil-water monolayers. Langmuir, 12(25), 5973–5976. https://doi.org/10.1021/la960748o.

    Article  Google Scholar 

  • Mysels, K. J. (1982). Diffusion-controlled adsorption kinetics. General solution and some applications. The Journal of Physical Chemistry, 86(23), 4648–4651. https://doi.org/10.1021/j100220a036.

    Article  Google Scholar 

  • Nagata, Y., Ohto, T., Bonn, M., & Kuhne, T. D. (2016). Surface tension of ab initio liquid water at the water-air interface. Journal of Chemical Physics, 144(20), 204705. https://doi.org/10.1063/1.4951710.

    Article  ADS  Google Scholar 

  • Neubauer, M. P., Poehlmann, M., & Fery, A. (2014). Microcapsule mechanics: From stability to function. Advances in Colloid and Interface Science, 207, 65–80. https://doi.org/10.1016/j.cis.2013.11.016.

    Article  Google Scholar 

  • Noskov, B. A. (1996). Fast adsorption at the liquid-gas interface. Advances in Colloid and Interface Science, 69, 63–129. https://doi.org/10.1016/s0001-8686(96)00308-9.

    Article  Google Scholar 

  • Ortega, F., Ritacco, H., & Rubio, R. G. (2010). Interfacial microrheology: Particle tracking and related techniques. Current Opinion in Colloid & Interface Science, 15(4), 237–245. https://doi.org/10.1016/j.cocis.2010.03.001.

    Article  Google Scholar 

  • Pagureva, N., Tcholakova, S., Golemanov, K., Denkov, N., Pelan, E., & Stoyanov, S. D. (2016). Surface properties of adsorption layers formed from triterpenoid and steroid saponins. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 491, 18–28. https://doi.org/10.1016/j.colsurfa.2015.12.001.

    Article  Google Scholar 

  • Pallas, N. R., & Pethica, B. A. (1987). The liquid vapor transition in monolayers of normal-pentadecanoic acid at the air-water-interface. Journal of the Chemical Society-Faraday Transactions I, 83, 585–590. https://doi.org/10.1039/f19878300585.

    Article  Google Scholar 

  • Patist, A., Kanicky, J. R., Shukla, P. K., & Shah, D. O. (2002). Importance of micellar kinetics in relation to technological processes. Journal of Colloid and Interface Science, 245(1), 1–15. https://doi.org/10.1006/jcis.2001.7955.

    Article  ADS  Google Scholar 

  • Pauchard, V., Rane, J. P., Zarkar, S., Couzis, A., & Banerjee, S. (2014). Long-term adsorption kinetics of asphaltenes at the oil-water interface: A random sequential adsorption perspective. Langmuir, 30(28), 8381–8390. https://doi.org/10.1021/la500384r.

    Article  Google Scholar 

  • Peliti, L., & Leibler, S. (1985). Effects of thermal fluctuations on systems with small surface tension. Physical Review Letters, 54(15), 1690–1693.

    Article  ADS  Google Scholar 

  • Petkov, J. T., Gurkov, T. D., Campbell, B. E., & Borwankar, R. P. (2000). Dilatational and shear elasticity of gel-like protein layers on air/water interface. Langmuir, 16(8), 3703–3711.

    Article  Google Scholar 

  • Pieper, G., Rehage, H., & Barthes-Biesel, D. (1998). Deformation of a capsule in a spinning drop apparatus. Journal of Colloid and Interface Science, 202(2), 293–300. https://doi.org/10.1006/jcis.1998.5438.

    Article  ADS  Google Scholar 

  • Pugh, R. J., Weissenborn, P., & Paulson, O. (1997). Flotation in inorganic electrolytes; the relationship between recover of hydrophobic particles, surface tension, bubble coalescence and gas solubility. International Journal of Mineral Processing, 51(1–4), 125–138. https://doi.org/10.1016/s0301-7516(97)00021-5.

    Article  Google Scholar 

  • Radke, C. J. (2015). Gibbs adsorption equation for planar fluid-fluid interfaces: Invariant formalism. Advances in Colloid and Interface Science, 222, 600–614. https://doi.org/10.1016/j.cis.2014.01.001.

    Article  Google Scholar 

  • Reynaert, S., Brooks, C. F., Moldenaers, P., Vermant, J., & Fuller, G. G. (2008). Analysis of the magnetic rod interfacial stress rheometer. Journal of Rheology, 52(1), 261–285. https://doi.org/10.1122/1.2798238.

    Article  ADS  Google Scholar 

  • Ritacco, H., Cagna, A., & Langevin, D. (2006). Oscillating bubble measurements of the compression viscoelasticity of mixed surfactant-polyelectrolyte surface layers. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 282, 203–209. https://doi.org/10.1016/j.colsurfa.2005.11.088.

    Article  Google Scholar 

  • Ritacco, H., Langevin, D., Diamant, D., & Andelman, D. (2011). Dynamic surface tension of aqueous solutions of ionic surfactants: Role of electrostatics. Langmuir, 27, 1009–1014.

    Article  Google Scholar 

  • Rowlinson, J. S., & Widom, B. (1982). Molecular theory of capillarity. Oxford: Clarendon Press.

    Google Scholar 

  • Sackmann, E. (1994). Membrane bending energy concept of vesicle-shape and cell-shape and shape-transitions. FEBS Letters, 346(1), 3–16. https://doi.org/10.1016/0014-5793(94)00484-6.

    Article  Google Scholar 

  • Saint-Jalmes, A., & Gallet, F. (1998). Buckling in a solid Langmuir monolayer: Light scattering measurements and elastic model. European Physical Journal B, 2(4), 489–494. https://doi.org/10.1007/s100510050272.

    Article  ADS  Google Scholar 

  • Samaniuk, J. R., Hermans, E., Verwijlen, T., Pauchard, V., & Vermant, J. (2015). Soft-glassy rheology of asphaltenes at liquid interfaces. Journal of Dispersion Science and Technology, 36(10), 1444–1451. https://doi.org/10.1080/01932691.2015.1022654.

    Article  Google Scholar 

  • Sasaki, T., Hattori, M., Sasaki, J., & Nukina, K. (1975). Studies of aqueous sodium dodecyl-sulfate solutions by activity measurements. Bulletin of the Chemical Society of Japan, 48(5), 1397–1403. https://doi.org/10.1246/bcsj.48.1397.

    Article  Google Scholar 

  • Schwartz, D. K., Knobler, C. M., & Bruinsma, R. (1994). Direct observation of Langmuir monolayer flow through a channel. Physical Review Letters, 73(21), 2841–2844.

    Article  ADS  Google Scholar 

  • Schwierz, N., Horinek, D., Sivan, U., & Netz, R. R. (2016). Reversed Hofmeister series – The rule rather than the exception. Current Opinion in Colloid & Interface Science, 23, 10–18. https://doi.org/10.1016/j.cocis.2016.04.003.

    Article  Google Scholar 

  • Scriven, L. E. (1960). Dynamics of a fluid interface. Equation of motion for newtonian surface fluids. Chemical Engineering Science, 12(2), 98–108. https://doi.org/10.1016/0009-2509(60)87003-0.

    Article  Google Scholar 

  • Simister, E. A., Thomas, R. K., Penfold, J., Aveyard, R., Binks, B. P., Cooper, P., Fletcher, P., Lu, J. R., & Sokolowski, A. (1992). Comparison of neutron reflection and surface-tension measurements of the surface excess of tetradecyltrimethylammonium bromide layers at the air-water-interface. Journal of Physical Chemistry, 96(3), 1383–1388. https://doi.org/10.1021/j100182a066.

    Article  Google Scholar 

  • Speight, J. G. (2004). Petroleum asphaltenes – Part 1 – Asphaltenes, resins and the structure of petroleum. Oil & Gas Science and Technology-Revue de l’IFP Energies Nouvelles, 59(5), 467–477. https://doi.org/10.2516/ogst:2004032.

    Article  Google Scholar 

  • Stocco, A., Garcia-Moreno, F., Manke, I., Banhart, J., & Langevin, D. (2011a). Particle-stabilised foams: Structure and aging. Soft Matter, 7(2), 631–637. https://doi.org/10.1039/c0sm00166j.

    Article  ADS  Google Scholar 

  • Stocco, A., Rio, E., Binks, B. P., & Langevin, D. (2011b). Aqueous foams stabilized solely by particles. Soft Matter, 7(4), 1260–1267. https://doi.org/10.1039/c0sm01290d.

    Article  ADS  Google Scholar 

  • Style, R. W., Jagota, A., Hui, C. Y., & Dufresne, E. R. (2017). Elastocapillarity: Surface tension and the mechanics of soft solids. In M. C. Marchetti & S. Sachdev (Eds.), Annual review of condensed matter physics (Vol. 8, pp. 99–118).

    Google Scholar 

  • Taylor, C. D., Valkovska, D. S., & Bain, C. D. (2003). A simple and rapid method for the determination of the surface equations of state and adsorption isotherms for efficient surfactants. Physical Chemistry Chemical Physics, 5, 4885–4891.

    Article  Google Scholar 

  • Tokiwa, Y., Sakamoto, H., Takiue, T., Aratono, M., Matsubara, H., & Bain, C. D. (2018). Effect of surface freezing on stability of oil-in-water emulsions. Langmuir, 34(21), 6205–6209. https://doi.org/10.1021/acs.langmuir.8b01088.

    Article  Google Scholar 

  • Uematsu, Y., Bonthuis, D. J., & Netz, R. R. (2019). Impurity effects at hydrophobic surfaces. Current Opinion in Electrochemistry, 13, 166–173. https://doi.org/10.1016/j.coelec.2018.09.003.

    Article  Google Scholar 

  • Vandebril, S., Franck, A., Fuller, G. G., Moldenaers, P., & Vermant, J. (2010). A double wall-ring geometry for interfacial shear rheometry. Rheologica Acta, 49(2), 131–144. https://doi.org/10.1007/s00397-009-0407-3.

    Article  Google Scholar 

  • Vollhardt, D. (2006). Nucleation in monolayers. Advances in Colloid and Interface Science, 123-126, 173–188. https://doi.org/10.1016/j.cis.2006.05.025.

    Article  Google Scholar 

  • Vollhardt, D. (2014). Brewster angle microscopy: A preferential method for mesoscopic characterization of monolayers at the air/water interface. Current Opinion in Colloid & Interface Science, 19(3), 183–197. https://doi.org/10.1016/j.cocis.2014.02.001.

    Article  Google Scholar 

  • Vollhardt, D., & Fainerman, V. B. (2010). Characterisation of phase transition in adsorbed monolayers at the air/water interface. Advances in Colloid and Interface Science, 154(1), 1–19. https://doi.org/10.1016/j.cis.2010.01.003.

    Article  Google Scholar 

  • Vora, S. R., Bognet, B., Patanwala, H. S., Young, C. D., Chang, S. Y., Daux, V., & Ma, A. W. K. (2018). Global strain field mapping of a particle-laden interface using digital image correlation. Journal of Colloid and Interface Science, 509, 94–101. https://doi.org/10.1016/j.jcis.2017.08.082.

    Article  ADS  Google Scholar 

  • Ward, A. F. H., & Tordai, L. (1946). Time-dependence of boundary tensions of solutions I. The role of diffusion in time-effects. The Journal of Chemical Physics, 14(7), 453–461.

    Article  ADS  Google Scholar 

  • Wyss, H. M., Miyazaki, K., Mattsson, J., Hu, Z. B., Reichman, D. R., & Weitz, D. A. (2007). Strain-rate frequency superposition: A rheological probe of structural relaxation in soft materials. Physical Review Letters, 98(23), 238303. https://doi.org/10.1103/PhysRevLett.98.238303.

    Article  ADS  Google Scholar 

  • Xie, K. L., de Loubens, C., Dubreuil, F., Gunes, D. Z., Jaeger, M., & Leonetti, M. (2017). Interfacial rheological properties of self-assembling biopolymer microcapsules. Soft Matter, 13(36), 6208–6217. https://doi.org/10.1039/c7sm01377a.

    Article  ADS  Google Scholar 

  • Xu, R., Dickinson, E., & Murray, B. S. (2008). Morphological changes in adsorbed protein films at the oil−water interface subjected to compression, expansion, and heat processing. Langmuir, 24(5), 1979–1988. https://doi.org/10.1021/la702806t.

    Article  Google Scholar 

  • Yan, C., Angus-Smyth, A., & Bain, C. D. (2013). Adsorption kinetics of non-ionic surfactants in micellar solutions: Effects of added charge. Faraday Discussions, 160, 45–61. https://doi.org/10.1039/c2fd20118f.

    Article  ADS  Google Scholar 

  • Zamora, J. M., Marquez, R., Forgiarini, A. M., Langevin, D., & Salager, J.-L. (2018). Interfacial rheology of low interfacial tension systems using a new oscillating spinning drop method. Journal of Colloid and Interface Science, 519, 27–37. https://doi.org/10.1016/j.jcis.2018.02.015.

    Article  ADS  Google Scholar 

  • Zang, D. Y., Rio, E., Langevin, D., Wei, B., & Binks, B. P. (2010). Viscoelastic properties of silica nanoparticle monolayers at the air-water interface. European Physical Journal E, 31(2), 125–134. https://doi.org/10.1140/epje/i2010-10565-7.

    Article  Google Scholar 

  • Zang, D. Y., Rio, E., Delon, G., Langevin, D., Wei, B., & Binks, B. P. (2011). Influence of the contact angle of silica nanoparticles at the air-water interface on the mechanical properties of the layers composed of these particles. Molecular Physics, 109(7–10), 1057–1066. https://doi.org/10.1080/00268976.2010.542778.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Langevin, D. (2020). Interfaces Between Two Fluids. In: Emulsions, Microemulsions and Foams. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-030-55681-5_1

Download citation

Publish with us

Policies and ethics