Skip to main content

Telomerase: A Target for Therapeutic Effects of Curcumin in Cancer

  • Chapter
  • First Online:
Reviews on New Drug Targets in Age-Related Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1286))

Abstract

Telomerases are attractive targets for development of new anticancer agents. Most tumors express the enzyme telomerase that maintains telomere length and thus ensures indefinite cell proliferation, a hallmark of cancer. Curcumin has been shown to be effective against several types of malignancies and has also been shown to have inhibitory effects on telomerase activity. Hence, the aim of this chapter is to review the available investigations of curcumin on telomerase activity. Based on the findings obtained from the different studies here, we conclude that the telomerase inhibitory effects of curcumin are integral to its anticancer activity, and thus curcumin may be useful therapeutically in the cancer field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Phatak P, Burger A (2007) Telomerase and its potential for therapeutic intervention. Br J Pharmacol 152(7):1003–1011

    Article  CAS  Google Scholar 

  2. Leão R, Apolónio JD, Lee D, Figueiredo A, Tabori U, Castelo-Branco P (2018) Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer. J Biomed Sci 25(1):22. https://doi.org/10.1186/s12929-018-0422-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. MacNeil DE, Bensoussan HJ, Autexier C (2016) Telomerase regulation from beginning to the end. Genes (Basel) 7(9) pii: E64. https://doi.org/10.3390/genes7090064

  4. Li JW-H, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325(5937):161–165

    Article  Google Scholar 

  5. Forouzanfar F, Bazzaz BSF, Hosseinzadeh H (2014) Black cumin (Nigella sativa) and its constituent (thymoquinone): a review on antimicrobial effects. Iran J Basic Med Sci 17(12):929–938

    PubMed  PubMed Central  Google Scholar 

  6. Forouzanfar F, Afkhami Goli A, Asadpour E, Ghorbani A, Sadeghnia HR (2013) Protective effect of Punica granatum L. against serum/glucose deprivation-induced PC12 cells injury. Evid Based Complement Alternat Med 2013:716730. https://doi.org/10.1155/2013/716730

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hosseini A, Forouzanfar F, Rakhshandeh H (2016) Hypnotic effect of Nepeta glomerulosa on pentobarbital-induced sleep in mice. Jundishapur J Nat Pharm Prod 11(1):e25063. https://doi.org/10.17795/jjnpp-25063

    Article  CAS  Google Scholar 

  8. Wang X, Zhang A, Zhou X, Liu Q, Nan Y, Guan Y et al (2016) An integrated chinmedomics strategy for discovery of effective constituents from traditional herbal medicine. Sci Rep 6:18997. https://doi.org/10.1038/srep18997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sadeghnia HR, Shaterzadeh H, Forouzanfar F, Hosseinzadeh H (2017) Neuroprotective effect of safranal, an active ingredient of Crocus sativus, in a rat model of transient cerebral ischemia. Folia Neuropathol 55(3):206–213

    Article  Google Scholar 

  10. Ekor M (2014) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4:177. https://doi.org/10.3389/fphar.2013.00177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Forouzanfar F, Hosseinzadeh H, Ebrahimzadeh Bideskan A, Sadeghnia HR (2016) Aqueous and ethanolic extracts of Boswellia serrata protect against focal cerebral ischemia and reperfusion injury in rats. Phytother Res 30(12):1954–1967

    Article  Google Scholar 

  12. Iranshahi M, Sahebkar A, Hosseini ST, Takasaki M, Konoshima T, Tokuda H (2010) Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo. Phytomedicine 17(3-4):269–273

    Article  CAS  Google Scholar 

  13. Iranshahi M, Sahebkar A, Takasaki M, Konoshima T, Tokuda H (2009) Cancer chemopreventive activity of the prenylated coumarin, umbelliprenin, in vivo. Eur J Cancer Prev 18(5):412–415

    Article  CAS  Google Scholar 

  14. Forouzanfar F (2018) Medicinal herbs in the treatment of neuropathic pain: a review. Iranian Iran J Basic Med Sci 21(4):347–358

    Google Scholar 

  15. Eitsuka T, Nakagawa K, Kato S, Ito J, Otoki Y, Takasu S et al (2018) Modulation of telomerase activity in cancer cells by dietary compounds: a review. Int J Mol Sci 19(2). https://doi.org/10.3390/ijms19020478

  16. Li S, Yuan W, Deng G, Wang P, Yang P, Aggarwal B (2011) Chemical composition and product quality control of turmeric (Curcuma longa L.). Pharmaceutical Crops 2:28–54. https://doi.org/10.2174/2210290601102010028

    Article  CAS  Google Scholar 

  17. Gupta SC, Patchva S, Aggarwal BB (2013) Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 15(1):195–218

    Article  CAS  Google Scholar 

  18. Prasad S, Tyagi AK, Aggarwal BB (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 46(1):2–18

    Article  CAS  Google Scholar 

  19. Gupta SC, Patchva S, Koh W, Aggarwal BB (2012) Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol 39(3):283–299

    Article  CAS  Google Scholar 

  20. Gopinath H, Karthikeyan K (2018) Turmeric: a condiment, cosmetic and cure. Indian J Dermatol Venereol Leprol 84(1):16–21

    Article  Google Scholar 

  21. Prasad S, Gupta SC, Tyagi AK, Aggarwal BB (2014) Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol Adv 32(6):1053–1064

    Article  CAS  Google Scholar 

  22. Abdollahi E, Momtazi AA, Johnston TP, Sahebkar A (2018) Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: a nature-made jack-of-all-trades? J Cell Physiol 233(2):830–848. https://doi.org/10.1002/jcp.25778

    Article  CAS  PubMed  Google Scholar 

  23. Mollazadeh H, Cicero AFG, Blesso CN, Pirro M, Majeed M, Sahebkar A (2019) Immune modulation by curcumin: the role of interleukin-10. Crit Rev Food Sci Nutr 59(1):89–101. https://doi.org/10.1080/10408398.2017.1358139

    Article  CAS  PubMed  Google Scholar 

  24. Momtazi AA, Derosa G, Maffioli P, Banach M, Sahebkar A (2016) Role of microRNAs in the therapeutic effects of curcumin in non-cancer diseases. Mol Diagn Ther 20(4):335–345. https://doi.org/10.1007/s40291-016-0202-7

    Article  CAS  PubMed  Google Scholar 

  25. Momtazi AA, Sahebkar A (2016) Difluorinated curcumin: A promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile. Curr Pharm Des 22(28):4386–4397

    Google Scholar 

  26. Panahi Y, Kianpour P, Mohtashami R, Jafari R, Simental-Mendía LE, Sahebkar A (2017) Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: a randomized controlled trial. Drug Res (Stuttg) 67(4):244–251

    Article  CAS  Google Scholar 

  27. Rezaee R, Momtazi AA, Monemi A, Sahebkar A (2017) Curcumin: a potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol Res 117:218–227

    Article  CAS  Google Scholar 

  28. Sahebkar A (2010) Molecular mechanisms for curcumin benefits against ischemic injury. Fertil Steril 94(5):e75–e76. https://doi.org/10.1016/j.fertnstert.2010.07.1071

    Article  PubMed  Google Scholar 

  29. Shakeri A, Cicero AFG, Panahi Y, Mohajeri M, Sahebkar A (2019) Curcumin: a naturally occurring autophagy modulator. J Cell Physiol 234(5):5643–5654

    Article  CAS  Google Scholar 

  30. Bachmeier BE, Melchart D (2019) Therapeutic effects of curcumin—from traditional past to present and future clinical applications. Int J Mol Sci 20(15) pii: E3757. https://doi.org/10.3390/ijms20153757

  31. Pagano E, Romano B, Izzo AA, Borrelli F (2018) The clinical efficacy of curcumin-containing nutraceuticals: an overview of systematic reviews. Pharmacol Res 134:79–91

    Article  CAS  Google Scholar 

  32. Chakraborty S, Ghosh U, Bhattacharyya N, Bhattacharya R, Roy M (2006) Inhibition of telomerase activity and induction of apoptosis by curcumin in K-562 cells. Mutat Res 596(1):81–90

    Article  CAS  Google Scholar 

  33. Hsin IL, Sheu GT, Chen HH, Chiu LY, Wang HD, Chan HW et al (2010) N-acetyl cysteine mitigates curcumin-mediated telomerase inhibition through rescuing of Sp1 reduction in A549 cells. Mutat Res 688(1):72–77

    Article  CAS  Google Scholar 

  34. Cui SX, Qu XJ, Xie YY, Zhou L, Nakata M, Makuuchi M et al (2006) Curcumin inhibits telomerase activity in human cancer cell lines. Int J Mol Med 18(2):227–231

    CAS  PubMed  Google Scholar 

  35. Ramachandran C, Fonseca HB, Jhabvala P, Escalon EA, Melnick SJ (2002) Curcumin inhibits telomerase activity through human telomerase reverse transcriptase in MCF-7 breast cancer cell line. Cancer Lett 184(1):1–6

    Article  CAS  Google Scholar 

  36. Khaw AK, HANDE MP (2007) Inhibition of telomerase activity and cell growth by curcumin in human brain tumour cells. AACR Annual Meeting—Apr 14–18, 2007; Los Angeles, CA, USA

    Google Scholar 

  37. Khaw AK, Hande MP, Kalthur G, Hande MP (2013) Curcumin inhibits telomerase and induces telomere shortening and apoptosis in brain tumour cells. J Cell Biochem 114(6):1257–1270

    Article  CAS  Google Scholar 

  38. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA (1999) Creation of human tumour cells with defined genetic elements. Nature 400(6743):464

    Article  CAS  Google Scholar 

  39. Lee JH, Chung IK (2010) Curcumin inhibits nuclear localization of telomerase by dissociating the Hsp90 co-chaperone p23 from hTERT. Cancer Lett 290(1):76–86

    Article  CAS  Google Scholar 

  40. Mishra VK, Kumar A (2009) Curcumin induced cell death and inhibition of telomerase activity in mouse lymphoma P388D1 cells. EXCLI J 8:20–29. https://doi.org/10.17877/DE290R-575

    Article  Google Scholar 

  41. Liu D, Hu H, Zhang J, Zhao X, Tang X, Chen D (2011) Drug pH-sensitive release in vitro and targeting ability of polyamidoamine dendrimer complexes for tumor cells. Chem Pharm Bull (Tokyo) 59(1):63–71

    Article  CAS  Google Scholar 

  42. Mukherjee S, Ghosh U, Bhattacharyya N, Bhattacharya R, Dey S, Roy M (2007) Curcumin-induced apoptosis in human leukemia cell HL-60 is associated with inhibition of telomerase activity. Mol Cell Biochem 297(1-2):31–39

    Article  CAS  Google Scholar 

  43. Pongsavee M (2017) Effects of 744ins20–ter240 BRCA1 mutation on breast/ovarian carcinogenesis and the role of curcumin in telomerase inhibition. Arch Med Sci Civil Dis 2(1):125–129. https://doi.org/10.5114/amscd.2017.70668

    Article  Google Scholar 

  44. Nasiri M, Zarghami N, Koshki KN, Mollazadeh M, Moghaddam MP, Yamchi MR et al (2013) Curcumin and silibinin inhibit telomerase expression in T47D human breast cancer cells. Asian Pac J Cancer Prev 14(6):3449–3453

    Article  Google Scholar 

  45. Badrzadeh F, Akbarzadeh A, Zarghami N, Yamchi MR, Zeighamian V, Tabatabae FS et al (2014) Comparison between effects of free curcumin and curcumin loaded NIPAAm-MAA nanoparticles on telomerase and PinX1 gene expression in lung cancer cells. Asian Pac J Cancer Prev 15(20):8931–8936

    Article  Google Scholar 

  46. Tian P, Wu Q, Lian K (2008) Preparation of temperature-and pH-sensitive, stimuli-responsive poly (N-isopropylacrylamide-co-methacrylic acid) nanoparticles. J Appl Polym Sci 108(4):2226–2232. https://doi.org/10.1002/app.27888

    Article  CAS  Google Scholar 

  47. Bagheri R, Sanaat Z, Zarghami N (2018) Synergistic effect of free and nano-encapsulated Chrysin-Curcumin on inhibition of hTERT gene expression in SW480 colorectal cancer cell line. Drug Res (Stuttg) 68(6):335–343

    Article  CAS  Google Scholar 

  48. Lotfi-Attari J, Pilehvar-Soltanahmadi Y, Dadashpour M, Alipour S, Farajzadeh R, Javidfar S et al (2017) Co-delivery of curcumin and chrysin by polymeric nanoparticles inhibit synergistically growth and hTERT gene expression in human colorectal cancer cells. Nutr Cancer 69(8):1290–1299

    Article  CAS  Google Scholar 

  49. Kazemi F, Zaraghami N, Monfaredan A (2011) β-Cyclodextrin-curcumin complex inhibit telomerase gene expression in T47-D breast cancer cell line. Afr J Biotechnol 10(83):19481–19488

    CAS  Google Scholar 

  50. Yallapu MM, Jaggi M, Chauhan SC (2010) Beta-cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B Biointerfaces 79(1):113–125

    Article  CAS  Google Scholar 

  51. Rami A, Zarghami N (2013) Comparison of inhibitory effect of curcumin nanoparticles and free curcumin in human telomerase reverse transcriptase gene expression in breast cancer. Adv Pharm Bull 3(1):127–130

    PubMed  PubMed Central  Google Scholar 

  52. Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the Indian solid gold. Adv Exp Med Biol 595:1–75

    Article  Google Scholar 

  53. Rana C, Piplani H, Vaish V, Nehru B, Sanyal S (2015) Downregulation of telomerase activity by diclofenac and curcumin is associated with cell cycle arrest and induction of apoptosis in colon cancer. Tumour Biol 36(8):5999–6010

    Article  CAS  Google Scholar 

  54. Roy M, Mukherjee S, Sarkar R, Biswas J (2011) Curcumin sensitizes chemotherapeutic drugs via modulation of PKC, telomerase, NF-κB and HDAC in breast cancer. Ther Deliv 2(10):1275–1293

    Article  CAS  Google Scholar 

  55. Tavakoli F, Jahanban-Esfahlan R, Seidi K, Jabbari M, Behzadi R, Pilehvar-Soltanahmadi Y et al (2018) Effects of nano-encapsulated curcumin-chrysin on telomerase, MMPs and TIMPs gene expression in mouse B16F10 melanoma tumour model. Artif Cells Nanomed Biotechnol 46(Suppl. 2):75–86

    Article  CAS  Google Scholar 

  56. Mollazade M, Nejati-Koshki K, Akbarzadeh A, Zarghami N, Nasiri M, Jahanban-Esfahlan R et al (2013) PAMAM dendrimers augment inhibitory effects of curcumin on cancer cell proliferation: possible inhibition of telomerase. Asian Pac J Cancer Prev 14(11):6925–6928

    Article  Google Scholar 

Download references

Conflict of Interest

Muhammed Majeed is the Founder and Chairman of Sabinsa Corporation and Sami Labs Limited. Other authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Forouzanfar, F., Majeed, M., Jamialahmadi, T., Sahebkar, A. (2021). Telomerase: A Target for Therapeutic Effects of Curcumin in Cancer. In: Guest, P.C. (eds) Reviews on New Drug Targets in Age-Related Disorders. Advances in Experimental Medicine and Biology(), vol 1286. Springer, Cham. https://doi.org/10.1007/978-3-030-55035-6_10

Download citation

Publish with us

Policies and ethics