Skip to main content

New Therapeutic Approaches and Biomarkers for Increased Healthspan

  • Chapter
  • First Online:
Reviews on New Drug Targets in Age-Related Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1286))

Abstract

Healthcare costs have increased in developing countries over the last few decades, mostly due to the escalation in average life expectancy and the concomitant increase in age-related disorders. To address this issue, widespread research is now being undertaken across the globe with the aim of finding a way of increasing healthy aging. A number of potential interventions have already shown promise, including lifestyle changes and the use of natural products or pharmaceuticals that may delay the onset of diseases associated with the aging process. In parallel, a number of potential biomarkers have already been identified that can be used for assessing risk of developing age-associated disorders and for monitoring response to therapeutic interventions. This review describes the most recent advances towards the goal of achieving healthier aging with fewer disabilities that may lead to enhanced quality of life and reduced healthcare costs around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schork NJ, Raghavachari N, Workshop Speakers and Participants (2018) Report: NIA workshop on translating genetic variants associated with longevity into drug targets. Geroscience 40(5–6):523–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guest PC (2019) Metabolic biomarkers in aging and anti-aging research. Adv Exp Med Biol 1178:247–264

    Article  CAS  PubMed  Google Scholar 

  3. Guest PC (2019) Of mice, whales, jellyfish and men: in pursuit of increased longevity. Adv Exp Med Biol 1178:1–24

    Article  CAS  PubMed  Google Scholar 

  4. Population Pyramids of the World from 1950 to 2100. https://www.populationpyramid.net/

  5. Hazzard WR (1989) Why do women live longer than men? Biologic differences that influence longevity. Postgrad Med 85(5):271–278. 281–283

    Article  CAS  PubMed  Google Scholar 

  6. Austad SN, Bartke A (2015) Sex differences in longevity and in responses to anti-aging interventions: a mini-review. Gerontology 62(1):40–46

    Article  PubMed  CAS  Google Scholar 

  7. Brooks RC, Garratt MG (2017) Life history evolution, reproduction, and the origins of sex-dependent aging and longevity. N Y Acad Sci 1389(1):92–107

    Article  Google Scholar 

  8. Sampathkumar NK, Bravo JI, Chen Y, Danthi PS, Donahue EK, Lai RW et al (2020) Widespread sex dimorphism in aging and age-related diseases. Hum Genet 139(3):333–356. https://doi.org/10.1007/s00439-019-02082-w

    Article  PubMed  Google Scholar 

  9. Allard M, Lebre V, Robine J-M (1998) The longest life: 122 extraordinary years of Jeanne Calment - From Van Gogh’s time to ours. W.H.Freeman & Co., Ltd., New York, NY

    Google Scholar 

  10. https://en.wikipedia.org/wiki/Kane_Tanaka

  11. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

  12. Global BMI Mortality Collaboration, Di Angelantonio E, Bhupathiraju ShN, Wormser D, Gao P, Kaptoge S et al (2016) Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 388(10046):776–786

    Article  Google Scholar 

  13. Di Angelantonio E, Bhupathiraju ShN, Wormser D, Gao P, Kaptoge S; Global BMI Mortality Collaboration et al (2016) Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 388(10046):776–786

    Article  Google Scholar 

  14. Oreopoulos A, Kalantar-Zadeh K, Sharma AM, Fonarow GC (2009) The obesity paradox in the elderly: potential mechanisms and clinical implications. Clin Geriatr Med 25(4):643–659

    Article  PubMed  Google Scholar 

  15. Bales CW, Buhr GT (2009) Body mass trajectory, energy balance, and weight loss as determinants of health and mortality in older adults. Obes Facts 2(3):171–178

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sharma A, Vallakati A, Einstein AJ, Lavie CJ, Arbab-Zadeh A, Lopez-Jimenez F et al (2014) Relationship of body mass index with total mortality, cardiovascular mortality, and myocardial infarction after coronary revascularization: evidence from a meta-analysis. Mayo Clin Proc 89(8):1080–1100

    Article  PubMed  Google Scholar 

  17. Rankinen T, Kim SY, Pérusse L, Després JP, Bouchard C (1999) The prediction of abdominal visceral fat level from body composition and anthropometry: ROC analysis. Int J Obes Relat Metab Disord 23(8):801–809

    Article  CAS  PubMed  Google Scholar 

  18. Romero-Corral A, Somers VK, Sierra-Johnson J, Jensen MD, Thomas RJ, Squires RW et al (2007) Diagnostic performance of body mass index to detect obesity in patients with coronary artery disease. Eur Heart J 28(17):2087–2093

    Article  PubMed  Google Scholar 

  19. Lemieux S, Prud’homme D, Bouchard C, Tremblay A, Despres JP (1996) A single threshold value of waist girth identifies normal-weight and overweight subjects with excess visceral adipose tissue. Am J Clin Nutr 64(5):685–693

    Article  CAS  PubMed  Google Scholar 

  20. Goodpaster BH, Krishnaswami S, Resnick H, Kelley DE, Haggerty C, Harris TB et al (2003) Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women. Diabetes Care 26(2):372–379

    Article  PubMed  Google Scholar 

  21. Goodpaster BH, Krishnaswami S, Harris TB, Katsiaras A, Kritchevsky SB, Simonsick EM et al (2005) Obesity, regional body fat distribution, and the metabolic syndrome in older men and women. Arch Intern Med 165(7):777–783

    Article  PubMed  Google Scholar 

  22. Tchernof A, Després JP (2013) Pathophysiology of human visceral obesity: an update. Physiol Rev 93(1):359–404

    Article  CAS  PubMed  Google Scholar 

  23. Beavers KM, Beavers DP, Houston DK, Harris TB, Hue TF, Koster A et al (2013) Associations between body composition and gait-speed decline: results from the health, aging, and body composition study. Am J Clin Nutr 97(3):552–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Hollander EL, Bemelmans WJ, Boshuizen HC, Friedrich N, Wallaschofski H, Guallar-Castillón P (2012) The association between waist circumference and risk of mortality considering body mass index in 65- to 74-year-olds: a meta-analysis of 29 cohorts involving more than 58 000 elderly persons. Int J Epidemiol 41(3):805–817

    Article  PubMed  PubMed Central  Google Scholar 

  25. Romero-Corral A, Somers VK, Sierra-Johnson J, Thomas RJ, Bailey KR, Collazo-Clavell ML et al (2008) Accuracy of body mass index to diagnose obesity in the US adult population. Int J Obes 32(6):959–966

    Article  CAS  Google Scholar 

  26. Vlassopoulos A, Combet E, Lean ME (2014) Changing distributions of body size and adiposity with age. Int J Obes 38(6):857–864

    Article  CAS  Google Scholar 

  27. Nowson C, O’Connell S (2015) Protein requirements and recommendations for older people: a review. Nutrients 7(8):6874–6899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M (2012) Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol 3:260. https://doi.org/10.3389/fphys.2012.00260

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kortebein P, Ferrando A, Lombeida J, Wolfe R, Evans WJ (2007) Effect of 10 days of bed rest on skeletal muscle in healthy older adults. JAMA 297:1772–1774

    Article  CAS  PubMed  Google Scholar 

  30. Wall BT, Dirks ML, Snijders T, Senden JM, Dolmans J, van Loon LJ (2014) Substantial skeletal muscle loss occurs during only 5 days of disuse. Acta Physiol (Oxf) 210:600–611

    Article  CAS  Google Scholar 

  31. Wall BT, Dirks ML, van Loon LJ (2013) Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia. Ageing Res Rev 12:898–906

    Article  CAS  PubMed  Google Scholar 

  32. Tieland M, Trouwborst I, Clark BC (2018) Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle 9(1):3–19

    Article  PubMed  Google Scholar 

  33. Newman AB, Yanez D, Harris T, Duxbury A, Enright PL, Cardiovascular Study Research Group et al (2001) Cardiovascular study research group weight change in old age and its association with mortality. J Am Geriatr Soc 49(10):1309–1318

    Article  CAS  PubMed  Google Scholar 

  34. Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Health, Aging and Body et al (2009) Health, aging, and body longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr 90(6):1579–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miller SL, Wolfe RR (2008) The danger of weight loss in the elderly. J Nutr Health Aging 12(7):487–491

    Article  CAS  PubMed  Google Scholar 

  36. Santanasto AJ, Goodpaster BH, Kritchevsky SB, Miljkovic I, Satterfield S, Schwartz AV et al (2017) Body composition remodeling and mortality: the health aging and body composition study. J Gerontol A Biol Sci Med Sci 72(4):513–519

    PubMed  Google Scholar 

  37. Fabbri E, Chiles Shaffer N, Gonzalez-Freire M, Shardell MD, Zoli M, Studenski SA et al (2017) Early body composition, but not body mass, is associated with future accelerated decline in muscle quality. J Cachexia Sarcopenia Muscle 8(3):490–499

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cameron J, McPhee JS, Jones DA, Degens H (2019) Five-year longitudinal changes in thigh muscle mass of septuagenarian men and women assessed with DXA and MRI. Aging Clin Exp Res 32(4):617–624. https://doi.org/10.1007/s40520-019-01248-w

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fragala MS, Cadore EL, Dorgo S, Izquierdo M, Kraemer WJ, Peterson MD et al (2019) Resistance training for older adults: position statement from the National Strength and conditioning association. J Strength Cond Res 33(8):2019–2052

    Article  PubMed  Google Scholar 

  40. Binder EF, Yarasheski KE, Steger-May K, Sinacore DR, Brown M, Schechtman KB et al (2011) Effects of progressive resistance training on body composition in frail older adults: results of a randomized, controlled trial. J Gerontol Ser A Biol Sci Med Sci 60(11):1425–1431

    Article  Google Scholar 

  41. Fiatarone MA, O’Neill EF, Ryan ND, Clements KM, Solares GR, Nelson ME et al (1994) Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med 330(25):1769–1775

    Article  CAS  PubMed  Google Scholar 

  42. Cunha PM, Ribeiro AS, Tomeleri CM, Schoenfeld BJ, Silva AM, Souza MF et al (2018) The effects of resistance training volume on osteosarcopenic obesity in older women. J Sports Sci 36:1564–1571

    Article  PubMed  Google Scholar 

  43. de Oliveira SA, Dutra MT, de Moraes WMAM, Funghetto SS, Lopes de Farias D, Dos Santos PHF et al (2018) Resistance training-induced gains in muscle strength, body composition, and functional capacity are attenuated in elderly women with sarcopenic obesity. Clin Interv Aging 13:411–417

    Article  Google Scholar 

  44. Cruz-Jentoft AJ, Landi F, Schneider SM, Zúñiga C, Arai H, Boirie Y et al (2014) Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the international sarcopenia initiative (EWGSOP and IWGS). Age Ageing 43(6):748–759

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ziegler AK, Jensen SM, Schjerling P, Mackey AL, Andersen JL, Kjaer M (2019) The effect of resistance exercise upon age-related systemic and local skeletal muscle inflammation. Exp Gerontol 121:19–32

    Article  CAS  PubMed  Google Scholar 

  46. Lichtenberg T, von Stengel S, Sieber C, Kemmler W (2019) The favorable effects of a high-intensity resistance training on sarcopenia in older community-dwelling men with osteosarcopenia: the randomized controlled FrOST study. Clin Interv Aging 14:2173–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Breen L, Phillips SM (2011) Skeletal muscle protein metabolism in the elderly: interventions to counteract the “anabolic resistance” of ageing. Nutr Metab (Lond) 8:68. https://doi.org/10.1186/1743-7075-8-68

    Article  CAS  Google Scholar 

  48. Gersovitz M, Motil K, Munro HN, Scrimshaw NS, Young VR (1982) Human protein requirements: assessment of the adequacy of the current recommended dietary allowance for dietary protein in elderly men and women. Am J Clin Nutr 35(1):6–14

    Article  CAS  PubMed  Google Scholar 

  49. Millward DJ, Fereday A, Gibson N, Pacy PJ (1997) Aging, protein requirements, and protein turnover. Am J Clin Nutr 66(4):774–786

    Article  CAS  PubMed  Google Scholar 

  50. Houston DK, Nicklas BJ, Ding J, Harris TB, Tylavsky FA, Newman AB et al (2008) Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the health, aging, and body composition (health ABC) study. Am J Clin Nutr 87(6):150–155

    Article  CAS  PubMed  Google Scholar 

  51. Franzke B, Neubauer O, Cameron-Smith D, Wagner KH (2018) Dietary protein, muscle and physical function in the very old. Nutrients 10(7):E935. https://doi.org/10.3390/nu10070935

    Article  CAS  PubMed  Google Scholar 

  52. Paddon-Jones D, Rasmussen BB (2009) Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care 12(1):86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tieland M, Borgonjen-Van den Berg KJ, van Loon LJ, de Groot LC (2012) Dietary protein intake in community-dwelling, frail, and institutionalized elderly people: scope for improvement. Eur J Nutr 51(2):173–179

    Article  CAS  PubMed  Google Scholar 

  54. Dupont J, Dedeyne L, Dalle S, Koppo K, Gielen E (2019) The role of omega-3 in the prevention and treatment of sarcopenia. Aging Clin Exp Res 31(6):825–836

    Article  PubMed  PubMed Central  Google Scholar 

  55. Strandberg E, Ponsot E, Piehl-Aulin K, Falk G, Kadi F (2019) Resistance training alone or combined with N-3 PUFA-rich diet in older women: effects on muscle fiber hypertrophy. J Gerontol A Biol Sci Med Sci 74(4):489–494

    Article  CAS  PubMed  Google Scholar 

  56. Rejnmark L (2011) Effects of vitamin d on muscle function and performance: a review of evidence from randomized controlled trials. Ther Adv Chronic Dis 2(1):25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Antoniak AE, Greig CA (2017) The effect of combined resistance exercise training and vitamin D3 supplementation on musculoskeletal health and function in older adults: a systematic review and meta-analysis. BMJ Open 7(7):e014619. https://doi.org/10.1136/bmjopen-2016-014619

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tessier AJ, Chevalier S (2018) An update on protein, Leucine, Omega-3 fatty acids, and vitamin D in the prevention and treatment of sarcopenia and functional decline. Nutrients 10(8):E1099. https://doi.org/10.3390/nu10081099

    Article  CAS  PubMed  Google Scholar 

  59. Solfrizzi V, Panza F, Imbimbo BP, D’Introno A, Galluzzo L, Gandin C et al (2015) Coffee consumption habits and the risk of mild cognitive impairment: the Italian longitudinal study on aging. J Alzheimers Dis 47(4):889–899

    Article  CAS  PubMed  Google Scholar 

  60. Ding M, Bhupathiraju SN, Satija A, van Dam RM, Hu FB (2016) Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation 129(6):643–659

    Article  CAS  Google Scholar 

  61. Saito E, Inoue M, Sawada N, Shimazu T, Yamaji T, Iwasaki M et al (2015) Association of coffee intake with total and cause-specific mortality in a Japanese population: the Japan public health center-based prospective study. Am J Clin Nutr 101(5):1029–1037

    Article  CAS  PubMed  Google Scholar 

  62. Guallar E, Blasco-Colmenares E, Arking DE, Zhao D (2017) Moderate coffee intake can be part of a healthy diet. Ann Intern Med 167(4):283–284

    Article  PubMed  Google Scholar 

  63. Kim Y, Je Y, Giovannucci E (2019) Coffee consumption and all-cause and cause-specific mortality: a meta-analysis by potential modifiers. Eur J Epidemiol 34(8):731–752

    Article  PubMed  Google Scholar 

  64. Takahashi K, Ishigami A (2017) Anti-aging effects of coffee. Aging (Albany NY) 9(8):1863–1864

    Article  Google Scholar 

  65. Rena G, Hardie DG, Pearson ER (2017) The mechanisms of action of metformin. Diabetologia 60(9):1577–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Campbell JM, Bellman SM, Stephenson MD, Lisy K (2017) Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: a systematic review and meta-analysis. Ageing Res Rev 40:31–44

    Article  CAS  PubMed  Google Scholar 

  67. Salvatore T, Clara Pafundi P, Morgillo F, Di Liello R, Galiero R, Nevola R et al (2020) Metformin: an old drug against old age and associated morbidities. Diabetes Res Clin Pract 16:108025. https://doi.org/10.1016/j.diabres.2020.108025

    Article  CAS  Google Scholar 

  68. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346(6):393–403

    Article  CAS  PubMed  Google Scholar 

  69. Hsu KJ, Liao CD, Tsai MW, Chen CN (2019) Effects of exercise and nutritional intervention on body composition, metabolic health, and physical performance in adults with Sarcopenic obesity: a meta-analysis. Nutrients 11(9):E2163. https://doi.org/10.3390/nu11092163

    Article  CAS  PubMed  Google Scholar 

  70. Beaudry KM, Devries MC (2019) Nutritional strategies to combat type 2 diabetes in aging adults: the importance of protein. Front Nutr 6:138. https://doi.org/10.3389/fnut.2019.00138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liao CD, Lee PH, Hsiao DJ, Huang SW, Tsauo JY, Chen HC et al (2018) Effects of protein supplementation combined with exercise intervention on frailty indices, body composition, and physical function in frail older adults. Nutrients 10(12):E1916. https://doi.org/10.3390/nu10121916

    Article  CAS  PubMed  Google Scholar 

  72. Seino S, Sumi K, Narita M, Yokoyama Y, Ashida K, Kitamura A et al (2018) Effects of low-dose dairy protein plus micronutrient supplementation during resistance exercise on muscle mass and physical performance in older adults: a randomized, controlled trial. J Nutr Health Aging 22(1):59–67

    Article  CAS  PubMed  Google Scholar 

  73. Wennie Huang WN, Perera S, VanSwearingen J, Studenski S (2010) Performance measures predict onset of activity of daily living difficulty in community-dwelling older adults. J Am Geriatr Soc 58(5):844–852

    Article  PubMed  Google Scholar 

  74. Ruff RM, Parker SB (1993) Gender- and age-specific changes in motor speed and eye-hand coordination in adults: normative values for the finger tapping and grooved pegboard tests. Percept Mot Skills 76(3 Pt 2):1219–1230

    Article  CAS  PubMed  Google Scholar 

  75. Ahmad R, Sayer AA, Al Snih S, Bath PA, Mortality Review Group; FALCon and HALCyon Study Teams et al (2010) Objectively measured physical capability levels and mortality: systematic review and meta-analysis. BMJ 341:c4467. https://doi.org/10.1136/bmj.c4467

    Article  Google Scholar 

  76. Wagner KH, Cameron-Smith D, Wessner B, Franzke B (2016) Biomarkers of aging: from function to molecular biology. Nutrients 8(6):338. https://doi.org/10.3390/nu8060338

    Article  CAS  PubMed Central  Google Scholar 

  77. Janssen I, Heymsfield SB, Ross R (2002) Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 50(5):889–896

    Article  PubMed  Google Scholar 

  78. Koster A, Ding J, Stenholm S, Caserotti P, Houston DK, Nicklas BJ et al (2011) Does the amount of fat mass predict age-related loss of lean mass, muscle strength, and muscle quality in older adults? J Gerontol A Biol Sci Med Sci 66(8):888–895

    Article  PubMed  Google Scholar 

  79. Lewington S, Whitlock G, Clarke R, Sherliker P, Emberson J, Prospective Studies Collaboration et al (2007) Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 370(9602):1829–1839

    Article  PubMed  CAS  Google Scholar 

  80. Briel M, Ferreira-Gonzalez I, You JJ, Karanicolas PJ, Akl EA, Wu P et al (2009) Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: systematic review and meta-regression analysis. BMJ 338:b92. https://doi.org/10.1136/bmj.b92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Visser M, Pahor M, Taaffe DR, Goodpaster BH, Simonsick EM, Newman AB et al (2002) Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the health ABC study. J Gerontol A Biol Sci Med Sci 57(5):M326–M332

    Article  PubMed  Google Scholar 

  82. Arai Y, Martin-Ruiz CM, Takayama M, Abe Y, Takebayashi T, Koyasu S et al (2015) Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine 2(10):1549–1558

    Article  PubMed  PubMed Central  Google Scholar 

  83. Salvioli S, Capri M, Bucci L, Lanni C, Racchi M, Uberti D et al (2009) Why do centenarians escape or postpone cancer? The role of igf-1, inflammation and p53. Cancer Immunol Immunother 58(12):1909–1917

    Article  CAS  PubMed  Google Scholar 

  84. Guillet C, Boirie Y (2005) Insulin resistance: a contributing factor to age-related muscle mass loss? Diabetes Metab 31(Spec No 2):5S20–5S26

    Google Scholar 

  85. Bartke A, Darcy J (2017) GH and ageing: pitfalls and new insights. Best Pract Res Clin Endocrinol Metab 31(1):113–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jasim S, Gharib H (2018) Thyroid and aging. Endocr Pract 24(4):369–374

    Article  PubMed  Google Scholar 

  87. Rodgers JL, Jones J, Bolleddu SI, Vanthenapalli S, Rodgers LE, Shah K et al (2019) Cardiovascular risks associated with gender and aging. J Cardiovasc Dev Dis 6(2):E19. https://doi.org/10.3390/jcdd6020019

    Article  CAS  PubMed  Google Scholar 

  88. Poehls J, Wassel CL, Harris TB, Havel PJ, Swarbrick MM, Health ABC Study (2009) Association of adiponectin with mortality in older adults: the health, aging, and body composition study. Diabetologia 52(4):591–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kolovou V, Diakoumakou O, Papazafiropoulou AK, Katsiki N, Fragopoulou E, Vasiliadis I et al (2018) Biomarkers and gene polymorphisms in members of long- and short-lived families: a longevity study. Open Cardiovasc Med J 12:59–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Remelli F, Vitali A, Zurlo A, Volpato S (2019) Vitamin D deficiency and sarcopenia in older persons. Nutrients 11(12):E2861. https://doi.org/10.3390/nu11122861

    Article  PubMed  Google Scholar 

  91. Carvalho AC, Santos NC, Portugal-Nunes C, Castanho TC, Moreira P, Costa PS et al (2019) 25-OH vitamin D levels and cognitive performance: longitudinal assessment in a healthy aging cohort. Front Aging Neurosci 11:330. https://doi.org/10.3389/fnagi.2019.00330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Johnston JR, Chase PB, Pinto JR (2017) Troponin through the looking-glass: emerging roles beyond regulation of striated muscle contraction. Oncotarget 9(1):1461–1482

    Article  PubMed  PubMed Central  Google Scholar 

  93. Revelas M, Thalamuthu A, Oldmeadow C, Evans TJ, Armstrong NJ, Kwok JB et al (2018) Review and meta-analysis of genetic polymorphisms associated with exceptional human longevity. Mech Ageing Dev 175:24–34

    Article  CAS  PubMed  Google Scholar 

  94. Silva-Sena GG, Camporez D, Santos LRD, Silva ASD, Sagrillo Pimassoni LH, Tieppo A et al (2018) An association study of FOXO3 variant and longevity. Genet Mol Biol 41(2):386–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Soerensen M, Nygaard M, Dato S, Stevnsner T, Bohr VA, Christensen K et al (2015) Association study of FOXO3A SNPs and aging phenotypes in Danish oldest-old individuals. Aging Cell 14(1):60–66

    Article  CAS  PubMed  Google Scholar 

  96. Sanese P, Forte G, Disciglio V, Grossi V, Simone C (2019) FOXO3 on the road to longevity: lessons from SNPs and chromatin hubs. Comput Struct Biotechnol J 17:737–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Piskovatska V, Strilbytska O, Koliada A, Vaiserman A, Lushchak O (2019) Health benefits of anti-aging drugs. Subcell Biochem 91:339–392

    Article  CAS  PubMed  Google Scholar 

  98. Beekman M, Blanché H, Perola M, Hervonen A, Bezrukov V, Sikora E et al (2013) Genome-wide linkage analysis for human longevity: genetics of healthy aging study. Aging Cell 12(2):184–193

    Article  CAS  PubMed  Google Scholar 

  99. Brooks-Wilson AR (2013) Genetics of healthy aging and longevity. Hum Genet 132(12):1323–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Huebbe P, Nebel A, Siegert S, Moehring J, Boesch-Saadatmandi C, Most E et al (2011) APOE ε4 is associated with higher vitamin D levels in targeted replacement mice and humans. FASEB J 25(9):3262–3270

    Article  CAS  PubMed  Google Scholar 

  101. Zhu Z, Xia W, Cui Y, Zeng F, Li Y, Yang Z et al (2019) Klotho gene polymorphisms are associated with healthy aging and longevity: evidence from a meta-analysis. Mech Ageing Dev 178:33–40

    Article  CAS  PubMed  Google Scholar 

  102. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390(6655):45–51

    Article  CAS  PubMed  Google Scholar 

  103. Olejnik A, Franczak A, Krzywonos-Zawadzka A, Kałużna-Oleksy M, Bil-Lula I (2018) The biological role of Klotho protein in the development of cardiovascular diseases. Biomed Res Int 2018:5171945. https://doi.org/10.1155/2018/5171945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Thatcher SE (2018) The renin-angiotensin-aldosterone system: methods and protocols (methods in molecular biology), Softcover reprint of the original, 1st edn. Humana, Totowa, NJ. 2017 edition (8 Aug. 2018). ISBN-10: 1493983733

    Google Scholar 

  105. Georgiopoulos G, Chrysohoou C, Errigo A, Pes G, Metaxa V, Zaromytidou M et al (2017) Arterial aging mediates the effect of TNF-α and ACE polymorphisms on mental health in elderly individuals: insights from IKARIA study. QJM 110(9):551–557

    Article  CAS  PubMed  Google Scholar 

  106. Handayani MDN, Sadewa AH, Farmawati A, Rochmah W (2018) Deletion polymorphism of angiotensin-converting enzyme gene is associated with low muscle mass in elderly people in Jakarta, Indonesia. Kobe J Med Sci 64(3):E119–E125

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Swales JD (1985) ACE inhibitors and the quality of life. J Cardiovasc Pharmacol 9(Suppl 3):S22–S25

    Google Scholar 

  108. Sumukadas D, Struthers AD, McMurdo ME (2006) Sarcopenia—A potential target for angiotensin-converting enzyme inhibition? Gerontology 52(4):237–242

    Article  CAS  PubMed  Google Scholar 

  109. Gulizibaer M, Hu Y, Chen F, Li H, Cheng Z, Mayila W (2015) Association of single nucleotide polymorphisms of IL-6 gene with longevity in Uyghurs in Xinjiang. Zhonghua Yi Xue Za Zhi 95(42):3428–3431

    CAS  PubMed  Google Scholar 

  110. Yan L, Hu R, Tu S, Cheng WJ, Zheng Q, Wang JW et al (2015) Meta-analysis of association between IL-6 -634C/G polymorphism and osteoporosis. Genet Mol Res 14(4):19225–19232

    Article  CAS  PubMed  Google Scholar 

  111. Bennermo M, Held C, Stemme S, Ericsson CG, Silveira A, Green F et al (2004) Genetic predisposition of the interleukin-6 response to inflammation: implications for a variety of major diseases? Clin Chem 50(11):2136–2140

    Article  CAS  PubMed  Google Scholar 

  112. Uciechowski P, Dempke WCM (2020) Interleukin-6: a masterplayer in the cytokine network. Oncology 20:1–7

    Google Scholar 

  113. Levine ME, Crimmins EM (2016) A genetic network associated with stress resistance, longevity, and cancer in humans. J Gerontol A Biol Sci Med Sci 71(6):703–712

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guest, P.C. (2021). New Therapeutic Approaches and Biomarkers for Increased Healthspan. In: Guest, P.C. (eds) Reviews on New Drug Targets in Age-Related Disorders. Advances in Experimental Medicine and Biology(), vol 1286. Springer, Cham. https://doi.org/10.1007/978-3-030-55035-6_1

Download citation

Publish with us

Policies and ethics