Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 516 Accesses

Abstract

The development of a theory of open quantum systems has had great impact on how the microscopic world is understood and realising how quantum mechanical behaviour can exploited in applications. The set up of the problem of calculating observables and making predictions about an open quantum system is formally rather simple, as shown in Sects. 2.1.1.1 and 2.1.1.2. The mathematical concepts required to write down the exact expressions one must evaluate to solve arbitrary problems are basic; using elementary tools of linear algebra, calculus, and probability theory, the closed form equations that describe arbitrary open quantum systems can be derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Figueroa-Romero P, Modi K, Pollock FA (2019) Almost Markovian processes from closed dynamics. Quantum 3:136

    Article  Google Scholar 

  2. Leggett AJ, Chakravarty S, Dorsey AT, Fisher MPA, Garg A, Zwerger W (1987) Dynamics of the dissipative two-state system. Rev Mod Phys 59(1):1

    Article  ADS  Google Scholar 

  3. Le Hur K (2010) Quantum phase transitions in spin-boson systems: Dissipation and light phenomena. In Understanding Quantum Phase Transitions. CRC Press, US

    Google Scholar 

  4. Wang H, Thoss M (2008) From coherent motion to localization: dynamics of the spin-boson model at zero temperature. New J Phys 10(11):115005

    Article  Google Scholar 

  5. Strathearn A, Kilda D (2018) Python implementation of TEMPO. https://doi.org/10.5281/zenodo.1322407

  6. Jrgensen MR, Potts PP, Paris MGA, Brask JB (2020) Tight bound on finite-resolution quantum thermometry at low temperatures. arXiv:2001.04096

  7. Minoguchi Y, Kirton P, Rabl P (2019) Environment-Induced Rabi Oscillations in the Optomechanical Boson-Boson Model. arXiv:1904.02164

  8. Gribben D, Strathearn A, Iles-Smith J, Kilda D, Nazir A, Lovett BW, Kirton P (2020) Exact quantum dynamics in structured environments. Phys Rev Res 2:013265

    Article  Google Scholar 

  9. Jørgensen MR, Pollock FA (2019) Exploiting the causal tensor network structure of quantum processes to efficiently simulate non-Markovian path integrals. Phys Rev Lett 123:240602

    Article  ADS  MathSciNet  Google Scholar 

  10. Sim E, Makri N (1997) Filtered propagator functional for iterative dynamics of quantum dissipative systems. Comput Phys Commun 99(2–3):335

    Article  ADS  Google Scholar 

  11. Makri N (2017) Iterative blip-summed path integral for quantum dynamics in strongly dissipative environments. J Chem Phys 146(13):134101

    Article  ADS  Google Scholar 

  12. Segal D, Millis AJ, Reichman DR (2010) Numerically exact path-integral simulation of nonequilibrium quantum transport and dissipation. Phys Rev B 82(20):205323

    Article  ADS  Google Scholar 

  13. Kilgour M, Agarwalla BK, Segal D (2019) Path-integral methodology and simulations of quantum thermal transport: full counting statistics approach. J Chem Phys 150(8):084111

    Article  ADS  Google Scholar 

  14. Suzuki S, Oshiyama H, Shibata N (2019) Quantum annealing of pure and random Ising chains coupled to a Bosonic environment. J Phys Soc Jpn 88(6):061003

    Article  ADS  Google Scholar 

  15. Suess D, Eisfeld A, Strunz WT (2014) Hierarchy of stochastic pure states for open quantum system dynamics. Phys Rev Lett 113(15):150403

    Article  ADS  Google Scholar 

  16. Prior J, Chin AW, Huelga SF, Plenio MB (2010) Efficient simulation of strong system-environment interactions. Phys Rev Lett 105(5):050404

    Article  ADS  Google Scholar 

  17. Chin AW, Prior J, Rosenbach R, Caycedo-Soler F, Huelga SF, Plenio MB (2013) The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexes. Nat Phys 9(2):113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aidan Strathearn .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strathearn, A. (2020). Conclusion. In: Modelling Non-Markovian Quantum Systems Using Tensor Networks. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-54975-6_5

Download citation

Publish with us

Policies and ethics