Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 518 Accesses

Abstract

In this chapter, the methods described in the previous chapter for numerically evaluating time ordered expressions are applied to study three simple models of open quantum systems that exhibit non-Markovian phenomena. First, the localisation phase transition in the Spin-Boson model is studied in Sect. 4.1, where it is shown that the location of the transition can be identified numerically to produce results consistent with existing literature. Localisation is non-Markovian by nature since it involves infinite ranged memory effects. In Sect. 4.2 the phenomenon of environment mediated interactions is investigated in a model of two spins interacting with a common environment. In this model the propagation of environmental excitations between the spins is nontrivial non-Markovian behaviour that is not possible to capture using existing methods, and the results presented in Sect. 4.2 are the first to confirm that the system behaves in an intuitive manner

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leggett AJ, Chakravarty S, Dorsey AT, Fisher MPA, Garg A, Zwerger W (1987) Dynamics of the dissipative two-state system. Rev Mod Phys 59(1):1

    Article  ADS  Google Scholar 

  2. Magazzù L, Forn-Díaz P, Belyansky R, Orgiazzi J-L, Yurtalan MA, Otto MR, Lupascu A, Wilson CM, Grifoni M (2018) Probing the strongly driven spin-boson model in a superconducting quantum circuit. Nat Commun 9:1403

    Article  ADS  Google Scholar 

  3. Forn-Díaz P, Romero G, Harmans CJPM, Solano E, Mooij JE (2016) Broken selection rule in the quantum Rabi model. Sci Rep 6:26720

    Article  ADS  Google Scholar 

  4. Leppäkangas J, Braumüller J, Hauck M, Reiner J-M, Schwenk I, Zanker S, Fritz L, Ustinov AV, Weides M, Marthaler M (2018) Quantum simulation of the spin-boson model with a microwave circuit. Phys Rev A 97(5):052321

    Article  ADS  Google Scholar 

  5. Ficheux Q, Jezouin S, Leghtas Z, Huard B (2018) Dynamics of a qubit while simultaneously monitoring its relaxation and dephasing. Nat Commun 9:1926

    Article  ADS  Google Scholar 

  6. Florens S, Venturelli D, Narayanan R (2010) Quantum Quenching, Annealing and Computation. Springer, Berlin, p 145

    Book  Google Scholar 

  7. Le Hur K (2010) Quantum phase transitions in spin-boson systems: dissipation and light phenomena. In Understanding Quantum Phase Transitions. CRC Press, US

    Google Scholar 

  8. Vojta M, Tong N-H, Bulla R (2005) Quantum phase transitions in the sub-ohmic spin-boson model: failure of the quantum-classical mapping. Phys Rev Lett 94(7):070604

    Article  ADS  Google Scholar 

  9. Chin AW, Prior J, Huelga SF, Plenio MB (2011) Generalized polaron ansatz for the ground state of the sub-ohmic spin-boson model: an analytic theory of the localization transition. Phys Rev Lett 107(16):160601

    Article  ADS  Google Scholar 

  10. Duan C, Tang Z, Cao J, Wu J (2017) Zero-temperature localization in a sub-ohmic spin-boson model investigated by an extended hierarchy equation of motion. Phys Rev B 95(21):214308

    Article  ADS  Google Scholar 

  11. Amann A (1991) Ground states of a spin-boson model. Ann Phys 208(2):414

    Article  ADS  MathSciNet  Google Scholar 

  12. Wang H, Thoss M (2008) From coherent motion to localization: dynamics of the spin-boson model at zero temperature. New J Phys 10(11):115005

    Article  Google Scholar 

  13. Strathearn A, Kirton P, Kilda D, Keeling J, Lovett BW (2018) Efficient non-Markovian quantum dynamics using time-evolving matrix product operators. Nat Commun 9:3322

    Article  ADS  Google Scholar 

  14. Bulla R, Tong N-H, Vojta M (2003) Numerical renormalization group for bosonic systems and application to the sub-ohmic spin-boson model. Phys Rev Lett 91:170601

    Article  ADS  Google Scholar 

  15. Weiss U (2012) Quantum Dissipative Systems. World Scientific

    Google Scholar 

  16. Orth PP, Roosen D, Hofstetter W, Le Hur K (2010) Dynamics, synchronization, and quantum phase transitions of two dissipative spins. Phys Rev B 82:144423

    Article  ADS  Google Scholar 

  17. Winter A, Rieger H (2014) Quantum phase transition and correlations in the multi-spin-boson model. Phys Rev B 90:224401

    Article  ADS  Google Scholar 

  18. McCutcheon DPS, Nazir A (2010) Quantum dot Rabi rotations beyond the weak exciton-phonon coupling regime. New J Phys 12(11):113042

    Article  Google Scholar 

  19. Andersson G, Suri B, Guo L, Aref T, Delsing P (2018) Nonexponential decay of a giant artificial atom. arXiv:1812.01302

  20. Facchi P, Pascazio S, Pepe FV, Pomarico D (2018) Correlated photon emission by two excited atoms in a waveguide. Phys Rev A 98(6):063823

    Article  ADS  Google Scholar 

  21. Mahan GD (2000) Many Particle Physics, 3rd edn. Springer, US

    Book  Google Scholar 

  22. McCutcheon DPS, Nazir A (2011) Coherent and incoherent dynamics in excitonic energy transfer: correlated fluctuations and off-resonance effects. Phys Rev B 83:165101

    Article  ADS  Google Scholar 

  23. Nalbach P, Eckel J, Thorwart M (2010) Quantum coherent biomolecular energy transfer with spatially correlated fluctuations. New J Phys 12(6):065043

    Article  Google Scholar 

  24. Hanschke L, Fischer KA, Appel S, Lukin D, Wierzbowski J, Sun S, Trivedi R, Vučković J, Finley J, Müller K (2018) Quantum dot single-photon sources with ultra-low multi-photon probability. npj Quantum Inf 4:43

    Google Scholar 

  25. Senellart P, Solomon G, White A (2017) High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol 12(11):1026

    Article  ADS  Google Scholar 

  26. Unitt DC, Bennett AJ, Atkinson P, Cooper K, See P, Gevaux D, Ward MB, Stevenson RM, Ritchie DA, Shields AJ (2005) Quantum dots as single-photon sources for quantum information processing. J Opt B: Quantum Semiclass Opt 7(7):S129

    Article  ADS  Google Scholar 

  27. Loss D, DiVincenzo DP (1998) Quantum computation with quantum dots. Phys Rev A 57(1):120

    Article  ADS  Google Scholar 

  28. Kloeffel C, Loss D (2013) Prospects for spin-based quantum computing in quantum dots. Ann Rev Condens Matter Phys 4(1):51

    Article  ADS  Google Scholar 

  29. Lovett BW, Reina JH, Nazir A, Briggs AI (2003) Optical schemes for quantum computation in quantum dot molecules. Phys Rev B 68(20):205319

    Article  ADS  Google Scholar 

  30. Bera D, Qian L, Tseng T-K, Holloway PH (2010) Quantum dots and their multimodal applications: a review. Materials 3(4):2260

    Article  ADS  Google Scholar 

  31. Godden TM, Ramsay AJ, Boyle SJ, Gauger EM, Nazir A, Lovett B, Fox M, Skolnick M (2011) Intensity damping of Rabi-oscillations and renormalization of the Rabi frequency in InGaAs/GaAs quantum dots. In CLEO:2011 - Laser Applications to Photonic Applications. OSA

    Google Scholar 

  32. Peter E, Hours J, Senellart P, Vasanelli A, Cavanna A, Bloch J, Gérard JM (2004) Phonon sidebands in exciton and biexciton emission from single GaAs quantum dots. Phys Rev B 69(4)

    Google Scholar 

  33. Roy C, Hughes S (2012) Polaron master equation theory of the quantum-dot Mollow triplet in a semiconductor cavity-QED system. Phys Rev B 85(11):115309

    Article  ADS  Google Scholar 

  34. McCutcheon DPS (2016) Optical signatures of non-Markovian behavior in open quantum systems. Phys Rev A 93(2):022119

    Article  ADS  Google Scholar 

  35. Iles-Smith J, McCutcheon DPS, Nazir A, Mørk J (2017) Phonon scattering inhibits simultaneous near-unity efficiency and indistinguishability in semiconductor single-photon sources. Nat Photonics 11(8):521

    Article  Google Scholar 

  36. Tighineanu P, Dreeßen CL, Flindt C, Lodahl P, Sørensen AS (2018) Phonon decoherence of quantum dots in photonic structures: broadening of the zero-phonon line and the role of dimensionality. Phys Rev Lett 120(25):257401

    Article  ADS  Google Scholar 

  37. Nazir A, McCutcheon DPS (2016) Modelling exciton-phonon interactions in optically driven quantum dots. J Phys Condens Matter 28(10):103002

    Article  ADS  Google Scholar 

  38. Vagov A, Croitoru MD, Axt VM, Kuhn T, Peeters FM (2007) Nonmonotonic field dependence of damping and reappearance of Rabi oscillations in quantum dots. Phys Rev Lett 98(22):227403

    Article  ADS  Google Scholar 

  39. Kaldewey T, Lüker S, Kuhlmann AV, Valentin SR, Chauveau J-M, Ludwig A, Wieck AD, Reiter DE, Kuhn T, Warburton RJ (2017) Demonstrating the decoupling regime of the electron-phonon interaction in a quantum dot using chirped optical excitation. Phys Rev B 95(24):241306

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aidan Strathearn .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strathearn, A. (2020). Results. In: Modelling Non-Markovian Quantum Systems Using Tensor Networks. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-54975-6_4

Download citation

Publish with us

Policies and ethics