Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 529 Accesses

Abstract

Fundamentally, all non-unitary behaviour of an open quantum system, Markovian or non-Markovian, mathematically originates from time-nonlocality present in its Liouvillian. Despite the unavoidable emergence of time-nonlocal Liouvillians in modelling open systems, there is no known practical and general way of using such Liouvillians to calculate observables exactly, even if a closed form of the Liouvillian can be found. It is not even known what the most general closed form of time-nonlocal Liouvillian is that guarantees physicality of an open system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diósi L, Ferialdi L (2014) General non-Markovian structure of gaussian master and stochastic schrödinger equations. Phys Rev Lett 113:200403

    Article  ADS  Google Scholar 

  2. Ferialdi L (2016) Exact closed master equation for gaussian non-Markovian dynamics. Phys Rev Lett 116:120402

    Article  ADS  Google Scholar 

  3. Makri N, Makarov DE (1995) Tensor propagator for iterative quantum time evolution of reduced density matrices. I. Theory. J Chem Phys 102(11):4600

    Google Scholar 

  4. Macedo HD, Oliveira JN (2013) Typing linear algebra: a biproduct-oriented approach. Sci Comput Progr 78(11):2160

    Article  Google Scholar 

  5. Arrighi P, Patricot C (2004) On quantum operations as quantum states. Ann Phys 311(1):26

    Article  ADS  MathSciNet  Google Scholar 

  6. Gill TL (2017) The Feynman-Dyson view. J Phys Conf Ser 845:012023

    Article  Google Scholar 

  7. Gill TL, Zachary WW (2011) Feynman operator calculus: the constructive theory. Expos Math 29(2):165

    Article  MathSciNet  Google Scholar 

  8. Feynman RP (1951) An operator calculus having applications in quantum electrodynamics. Phys Rev 84(1):108

    Article  ADS  MathSciNet  Google Scholar 

  9. Jefferies B, Johnson GW, Kim BS (2006) Feynman’s operational calculi: methods for iterative disentangling. Acta Applicandae Mathematicae 92(3):293–309

    Article  MathSciNet  Google Scholar 

  10. Pollock FA, Rodríguez-Rosario C, Frauenheim T, Paternostro M, Modi K (2018) Non-Markovian quantum processes: complete framework and efficient characterization. Phys Rev A 97:012127

    Article  ADS  Google Scholar 

  11. Jørgensen MR, Pollock FA (2019) Exploiting the causal tensor network structure of quantum processes to efficiently simulate non-Markovian path integrals. Phys Rev Lett 123:240602

    Article  ADS  MathSciNet  Google Scholar 

  12. Chiribella G, D’Ariano GM, Perinotti P (2008) Quantum circuit architecture. Phys Rev Lett 101:060401

    Article  ADS  Google Scholar 

  13. Cotler J, Jian C-M, Qi X-L, Wilczek F (2018) Superdensity operators for spacetime quantum mechanics. J High Energy Phys 9:2018

    MathSciNet  MATH  Google Scholar 

  14. Grabert H, Schramm P, Ingold G-L (1988) Quantum Brownian motion: the functional integral approach. Phys Rep 168(3):115–207

    Article  ADS  MathSciNet  Google Scholar 

  15. Strathearn A, Kirton P, Kilda D, Keeling J, Lovett BW (2018) Efficient non-Markovian quantum dynamics using time-evolving matrix product operators. Nat Commun 9:3322

    Article  ADS  Google Scholar 

  16. Makri N (1995) Numerical path integral techniques for long time dynamics of quantum dissipative systems. J Math Phys 36(5):2430

    Article  ADS  MathSciNet  Google Scholar 

  17. Makri N, Makarov DE (1995) Tensor propagator for iterative quantum time evolution of reduced density matrices. II. Numerical methodology. J Chem Phys 102(11):4611

    Article  ADS  Google Scholar 

  18. Strathearn A, Lovett BW, Kirton P (2017) Efficient real-time path integrals for non-Markovian spin-boson models. New J Phys 19(9):093009

    Article  Google Scholar 

  19. Strathearn A, Kilda D (2018) Python implementation of TEMPO. https://doi.org/10.5281/zenodo.1322407

  20. Sim E (2001) Quantum dynamics for a system coupled to slow baths: on-the-fly filtered propagator method. J Chem Phys 115(10):4450

    Article  ADS  Google Scholar 

  21. Sim E, Makri N (1996) Tensor propagator with weight-selected paths for quantum dissipative dynamics with long-memory kernels. Chem Phys Lett 249(3–4):224

    Article  ADS  Google Scholar 

  22. Sim E, Makri N (1997) Filtered propagator functional for iterative dynamics of quantum dissipative systems. Comput Phys Commun 99(2–3):335

    Article  ADS  Google Scholar 

  23. Makri N (2017) Iterative blip-summed path integral for quantum dynamics in strongly dissipative environments. J Chem Phys 146(13):134101

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aidan Strathearn .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strathearn, A. (2020). Method. In: Modelling Non-Markovian Quantum Systems Using Tensor Networks. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-54975-6_3

Download citation

Publish with us

Policies and ethics