Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 528 Accesses

Abstract

In this section the elementary concepts used to construct and solve models for open quantum systems are reviewed and demonstrated. First, a general overview of the techniques required to allow for a quantum mechanical description of open systems is presented in Sect. 2.1.1. A key concept here is that one must always begin with a quantum mechanical model of a closed system, consisting of the system, which is considered open, and the environment to which it couples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breuer H-P, Petruccione F (2002) The Theory of Open Quantum Systems. Oxford University Press

    Google Scholar 

  2. Weiss U (2012) Quantum Dissipative Systems. World Scientific

    Google Scholar 

  3. Nakajima S (1958) On quantum theory of transport phenomena: steady diffusion. Prog Theor Phys 20(6):948

    Google Scholar 

  4. Zwanzig R (1960) Ensemble method in the theory of irreversibility. J Chem Phys 33(5):1338

    Google Scholar 

  5. Ford GW, O’Connell RF (1996) There is no quantum regression theorem. Phys Rev Lett 77:798

    ADS  MathSciNet  MATH  Google Scholar 

  6. Gardiner C, Zoller P (2004) Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer Series in Synergetics. Springer, Berlin

    Google Scholar 

  7. Breuer H-P, Petruccione F (2001) Destruction of quantum coherence through emission of bremsstrahlung. Phys Rev A 63:032102

    ADS  Google Scholar 

  8. Feynman RP, Hibbs AR (1965) Quantum Mechanics and Path Integrals. McGraw-Hill, New York

    MATH  Google Scholar 

  9. Feynman RP, Vernon FL (1963) The theory of a general quantum system interacting with a linear dissipative system. Ann Phys 24:118

    ADS  MathSciNet  Google Scholar 

  10. Ingold G-L (2002) Path integrals and their application to dissipative quantum systems. In Coherent Evolution in Noisy Environments. Springer, Berlin Heidelberg, p 1

    Google Scholar 

  11. de Vega I, Alonso D (2017) Dynamics of non-Markovian open quantum systems. Rev Mod Phys 89:015001

    ADS  MathSciNet  Google Scholar 

  12. Breuer H-P, Laine E-M, Piilo J, Vacchini B (2016) Colloquium: non-Markovian dynamics in open quantum systems. Rev ModPhys 88:021002

    ADS  Google Scholar 

  13. Ferialdi L (2016) Exact closed master equation for gaussian non-Markovian dynamics. Phys Rev Lett 116:120402

    ADS  Google Scholar 

  14. Breuer H-P, Ma A, Petruccione F (2004) Time-Local Master Equations: Influence Functional and Cumulant Expansion. Springer, US, Boston, MA

    Google Scholar 

  15. Dyson FJ (1949) The radiation theories of Tomonaga, Schwinger, and Feynman. Phys Rev 75(3):486

    ADS  MathSciNet  MATH  Google Scholar 

  16. Rivas Á, Huelga SF (2012) Open Quantum Systems. Springer, Berlin

    MATH  Google Scholar 

  17. Diósi L, Ferialdi L (2014) General non-Markovian structure of gaussian master and stochastic schrödinger equations. Phys Rev Lett 113:200403

    ADS  Google Scholar 

  18. Caldeira AO, Leggett AJ (1983) Path integral approach to quantum Brownian motion. Phys A 121(3):587

    MathSciNet  MATH  Google Scholar 

  19. Caldeira AO, Leggett AJ (1983) Quantum tunnelling in a dissipative system. Ann Phys (N.Y.) 149(2):374

    Google Scholar 

  20. Caldeira AO, Leggett AJ (1981) Influence of dissipation on quantum tunneling in macroscopic systems. Phys Rev Lett 46:211

    ADS  Google Scholar 

  21. Mahan GD (2000) Many Particle Physics, 3rd edn. Springer, US

    Google Scholar 

  22. Walls DF, Milburn GJ (2007) Quantum Optics. Springer, Berlin

    MATH  Google Scholar 

  23. Leggett AJ, Chakravarty S, Dorsey AT, Fisher MPA, Garg A, Zwerger W (1987) Dynamics of the dissipative two-state system. Rev Mod Phys 59(1):1

    ADS  Google Scholar 

  24. Kok P, Lovett BW (2010) Introduction to optical quantum information processing. Cambridge University Press, Cambridge

    Google Scholar 

  25. DiVincenzo D, Terhal B (1998) Decoherence: the obstacle to quantum computation. Phys World 11(3):53

    Google Scholar 

  26. Nazir A, McCutcheon DPS (2016) Modelling exciton-phonon interactions in optically driven quantum dots. J Phys Condens Matter 28(10):103002

    ADS  Google Scholar 

  27. Ramsay AJ, Godden TM, Boyle SJ, Gauger EM, Nazir A, Lovett BW, Fox AM, Skolnick MS (2010) Phonon-induced Rabi-frequency renormalization of optically driven single InGaAs/GaAs quantum dots. Phys Rev Lett 105:177402

    ADS  Google Scholar 

  28. Ramsay AJ, Gopal AV, Gauger EM, Nazir A, Lovett BW, Fox AM, Skolnick MS (2010) Damping of exciton Rabi rotations by acoustic phonons in optically excited InGaAs/GaAs quantum dots. Phys Rev Lett 104:017402

    ADS  Google Scholar 

  29. Unitt DC, Bennett AJ, Atkinson P, Cooper K, See P, Gevaux D, Ward MB, Stevenson RM, Ritchie DA, Shields AJ (2005) Quantum dots as single-photon sources for quantum information processing. J Opt B: Quantum Semiclass Opt 7(7):S129

    ADS  Google Scholar 

  30. Michler P (2000) A quantum dot single-photon turnstile device. Science 290(5500):2282

    ADS  Google Scholar 

  31. Lovett BW, Reina JH, Nazir A, Briggs AI (2003) Optical schemes for quantum computation in quantum dot molecules. Phys Rev B 68(20):205319

    ADS  Google Scholar 

  32. Lv D, An S, Liu Z, Zhang J-N, Pedernales JS, Lamata L, Solano E, Kim K (2018) Quantum simulation of the quantum Rabi model in a trapped ion. Phys Rev X 8(2):021027

    Google Scholar 

  33. Moya-Cessa HM (2016) Fast quantum Rabi model with trapped ions. Sci Rep 6:38961

    ADS  Google Scholar 

  34. Braumüller J, Marthaler M, Schneider A, Stehli A, Rotzinger H, Weides M, Ustinov AV (2017) Analog quantum simulation of the Rabi model in the ultra-strong coupling regime. Nat Commun 8:779

    ADS  Google Scholar 

  35. Forn-Díaz P, Romero G, Harmans CJPM, Solano E, Mooij JE (2016) Broken selection rule in the quantum Rabi model. Sci Rep 6:26720

    ADS  Google Scholar 

  36. Roy C, Hughes S (2012) Polaron master equation theory of the quantum-dot Mollow triplet in a semiconductor cavity-QED system. Phys Rev B 85(11):115309

    ADS  Google Scholar 

  37. Fischer KA, Hanschke L, Kremser M, Finley JJ, Müller K, Vučković J (2017) Pulsed Rabi oscillations in quantum two-level systems: beyond the area theorem. Quantum Sci Technol 3(1):014006

    ADS  Google Scholar 

  38. Lindblad G (1976) On the generators of quantum dynamical semigroups. Commun Math Phys 48(2):119

    ADS  MathSciNet  MATH  Google Scholar 

  39. Gorini V (1976) Completely positive dynamical semigroups of n-level systems. J Math Phys 17(5):821

    ADS  MathSciNet  Google Scholar 

  40. Haikka P, Johnson TH, Maniscalco S (2013) Non-Markovianity of local dephasing channels and time-invariant discord. Phys Rev A 87(1):010103

    ADS  Google Scholar 

  41. Redfield AG (1965) The theory of relaxation processes. In Advances in Magnetic Resonance. Elsevier, p 1

    Google Scholar 

  42. Mollow BR (1969) Power spectrum of light scattered by two-level systems. Phys Rev 188(5):1969

    ADS  Google Scholar 

  43. Liu Z-D, Lyyra H, Sun Y-N, Liu B-H, Li C-F, Guo G-C, Maniscalco S, Piilo J (2018) Experimental implementation of fully controlled dephasing dynamics and synthetic spectral densities. Nat Commun 9:3453

    ADS  Google Scholar 

  44. Ros V, Müller M, Scardicchio A (2015) Integrals of motion in the many-body localized phase. Nucl Phys B 891:420

    ADS  MathSciNet  MATH  Google Scholar 

  45. Ali MM, Lo P-Y, Tu MW-Y, Zhang W-M (2015) Non-Markovianity measure using two-time correlation functions. Phys Rev A 92:062306

    ADS  Google Scholar 

  46. Milz S, Kim MS, Pollock FA, Modi K (2019) CP divisibility does not mean Markovianity. arXiv:1901.05223

  47. Breuer H-P, Laine E-M, Piilo J (2009) Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys Rev Lett 103:210401

    ADS  MathSciNet  Google Scholar 

  48. Laine E-M, Piilo J, Breuer H-P (2010) Measure for the non-Markovianity of quantum processes. Phys Rev A 81:062115

    ADS  Google Scholar 

  49. Rivas Á, Huelga SF, Plenio MB (2010) Entanglement and non-Markovianity of quantum evolutions. Phys Rev Lett 105:050403

    ADS  MathSciNet  Google Scholar 

  50. Chitambar E, Hsieh M-H (2016) Relating the resource theories of entanglement and quantum coherence. Phys Rev Lett 117(2):020402

    ADS  Google Scholar 

  51. Horodecki R, Horodecki P, Horodecki M, Horodecki K (2009) Quantum entanglement. Rev Mod Phys 81(2):865

    ADS  MathSciNet  MATH  Google Scholar 

  52. Coecke B, Fritz T, Spekkens RW (2016) A mathematical theory of resources. Inf Comput 250:59

    MathSciNet  MATH  Google Scholar 

  53. Bylicka B, Chruściński D, Maniscalco S (2014) Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective. Sci Rep 4:5720

    ADS  Google Scholar 

  54. Sakuldee F, Milz S, Pollock FA, Modi K (2018) Non-Markovian quantum control as coherent stochastic trajectories. J Phys A: Math Theor 51(41):414014

    MathSciNet  MATH  Google Scholar 

  55. Kitajima S, Ban M, Shibata F (2013) A solvable dissipative jaynes-cummings model with initial correlation. J Phys B: At Mol Opt Phys 46(22):224004

    ADS  Google Scholar 

  56. Vacchini B, Breuer H-P (2010) Exact master equations for the non-Markovian decay of a qubit. Phys Rev A 81:042103

    ADS  Google Scholar 

  57. Eastham PR, Kirton P, Cammack HM, Lovett BW, Keeling J (2016) Bath-induced coherence and the secular approximation. Phys Rev A 94:012110

    ADS  Google Scholar 

  58. Hu BL, Paz JP, Zhang Y (1992) Quantum Brownian motion in a general environment: exact master equation with nonlocal dissipation and colored noise. Phys Rev D 45(8):2843

    ADS  MathSciNet  MATH  Google Scholar 

  59. Halliwell JJ, Yu T (1996) Alternative derivation of the hu-paz-zhang master equation of quantum Brownian motion. Phys Rev D 53(4):2012

    ADS  MathSciNet  Google Scholar 

  60. Ferialdi L (2017) Dissipation in the caldeira-leggett model. Physical Review A 95(5)

    Google Scholar 

  61. Würger A (1998) Strong-coupling theory for the spin-phonon model. Phys Rev B 57(1):347

    Google Scholar 

  62. McCutcheon DPS, Nazir A (2010) Quantum dot Rabi rotations beyond the weak exciton-phonon coupling regime. New J Phys 12(11):113042

    Google Scholar 

  63. McCutcheon DPS (2016) Optical signatures of non-Markovian behavior in open quantum systems. Phys Rev A 93(2):022119

    ADS  Google Scholar 

  64. Roy-Choudhury K, Hughes S (2015) Quantum theory of the emission spectrum from quantum dots coupled to structured photonic reservoirs and acoustic phonons. Phys Rev B 92(20):205406

    ADS  Google Scholar 

  65. Dekker H (1987) Noninteracting-blip approximation for a two-level system coupled to a heat bath. Phys Rev A 35:1436

    ADS  Google Scholar 

  66. McCutcheon DPS, Dattani NS, Gauger EM, Lovett BW, Nazir A (2011) A general approach to quantum dynamics using a variational master equation: application to phonon-damped Rabi rotations in quantum dots. Phys Rev B 84:081305

    ADS  Google Scholar 

  67. Pollock FA, McCutcheon DPS, Lovett BW, Gauger EM, Nazir A (2013) A multi-site variational master equation approach to dissipative energy transfer. New J Phys 15(7):075018

    MathSciNet  Google Scholar 

  68. Lee CK, Moix J, Cao J (2012) Accuracy of second order perturbation theory in the polaron and variational polaron frames. J Chem Phys 136(20):204120

    ADS  Google Scholar 

  69. Mazzola L, Maniscalco S, Piilo J, Suominen K-A, Garraway BM (2009) Pseudomodes as an effective description of memory: non-markovian dynamics of two-state systems in structured reservoirs. Phys Rev A 80:012104

    ADS  Google Scholar 

  70. Garg A, Onuchic JN, Ambegaokar V (1985) Effect of friction on electron transfer in biomolecules. J Chem Phys 83(9):4491

    ADS  Google Scholar 

  71. Hughes KH, Christ CD, Burghardt I (2009) Effective-mode representation of non-Markovian dynamics: a hierarchical approximation of the spectral density. II. Application to environment-induced nonadiabatic dynamics. J Chem Phys 131(12):124108

    ADS  Google Scholar 

  72. Iles-Smith J, Lambert N, Nazir A (2014) Environmental dynamics, correlations, and the emergence of noncanonical equilibrium states in open quantum systems. Phys Rev A 90(3):032114

    ADS  Google Scholar 

  73. Iles-Smith J, Dijkstra AG, Lambert N, Nazir A (2016) Energy transfer in structured and unstructured environments: master equations beyond the born-markov approximations. J Chem Phys 144(4):044110

    ADS  Google Scholar 

  74. Strasberg P, Schaller G, Lambert N, Brandes T (2016) Nonequilibrium thermodynamics in the strong coupling and non-Markovian regime based on a reaction coordinate mapping. New J Phys 18(7):073007

    Google Scholar 

  75. Chin AW, Rivas Á, Huelga SF, Plenio MB (2010) Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials. J Math Phys 51(9):092109

    ADS  MathSciNet  MATH  Google Scholar 

  76. Woods MP, Groux R, Chin AW, Huelga SF, Plenio MB (2014) Mappings of open quantum systems onto chain representations and Markovian embeddings. J Math Phys 55(3):032101

    ADS  MathSciNet  MATH  Google Scholar 

  77. Woods MP, Cramer M, Plenio MB (2015) Simulating bosonic baths with error bars. Phys Rev Lett 115(13):130401

    ADS  Google Scholar 

  78. Prior J, Chin AW, Huelga SF, Plenio MB (2010) Efficient simulation of strong system-environment interactions. Phys Rev Lett 105(5):050404

    ADS  Google Scholar 

  79. Chin AW, Prior J, Rosenbach R, Caycedo-Soler F, Huelga SF, Plenio MB (2013) The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexes. Nat Phys 9(2):113

    Google Scholar 

  80. Makri N, Makarov DE (1995) Tensor propagator for iterative quantum time evolution of reduced density matrices. I. Theory. J Chem Phys 102(11):4600

    ADS  Google Scholar 

  81. Makri N, Makarov DE (1995) Tensor propagator for iterative quantum time evolution of reduced density matrices. II. Numerical methodology. J Chem Phys 102(11):4611

    ADS  Google Scholar 

  82. Shao J, Makri N (2002) Iterative path integral formulation of equilibrium correlation functions for quantum dissipative systems. J Chem Phys 116(2):507

    ADS  Google Scholar 

  83. Cosacchi M, Cygorek M, Ungar F, Barth AM, Vagov A, Axt VM (2018) Path-integral approach for nonequilibrium multitime correlation functions of open quantum systems coupled to Markovian and non-Markovian environments. Phys Rev B 98(12):125302

    ADS  Google Scholar 

  84. Sim E (2001) Quantum dynamics for a system coupled to slow baths: on-the-fly filtered propagator method. J Chem Phys 115(10):4450

    ADS  Google Scholar 

  85. Sim E, Makri N (1997) Filtered propagator functional for iterative dynamics of quantum dissipative systems. Comput Phys Commun 99(2–3):335

    ADS  MATH  Google Scholar 

  86. Makri N (2017) Iterative blip-summed path integral for quantum dynamics in strongly dissipative environments. J Chem Phys 146(13):134101

    ADS  Google Scholar 

  87. Segal D, Millis AJ, Reichman DR (2010) Numerically exact path-integral simulation of nonequilibrium quantum transport and dissipation. Phys Rev B 82(20):205323

    ADS  Google Scholar 

  88. Barth AM, Vagov A, Axt VM (2016) Path-integral description of combined Hamiltonian and non-Hamiltonian dynamics in quantum dissipative systems. Phys Rev B 94(12):125439

    ADS  Google Scholar 

  89. Cygorek M, Barth AM, Ungar F, Vagov A, Axt VM (2017) Nonlinear cavity feeding and unconventional photon statistics in solid-state cavity QED revealed by many-level real-time path-integral calculations. Phys Rev B 96(20):201201

    ADS  Google Scholar 

  90. Makri N (2012) Path integral renormalization for quantum dissipative dynamics with multiple timescales. Mol Phys 110(9–10):1001

    ADS  Google Scholar 

  91. Lambert R, Makri N (2012) Memory propagator matrix for long-time dissipative charge transfer dynamics. Mol Phys 110(15–16):1967

    ADS  Google Scholar 

  92. Walters PL, Banerjee T, Makri N (2015) On iterative path integral calculations for a system interacting with a shifted dissipative bath. J Chem Phys 143(7):074112

    ADS  Google Scholar 

  93. Ilk G, Makri N (1994) Real time path integral methods for a system coupled to an anharmonic bath. J Chem Phys 101(8):6708

    ADS  Google Scholar 

  94. Cygorek M, Ungar F, Seidelmann T, Barth AM, Vagov A, Axt VM, Kuhn T (2018) Comparison of different concurrences characterizing photon pairs generated in the biexciton cascade in quantum dots coupled to microcavities. Phys Rev B 98(4):045303

    ADS  Google Scholar 

  95. Thorwart M, Reimann P, Hänggi P (2000) Iterative algorithm versus analytic solutions of the parametrically driven dissipative quantum harmonic oscillator. Phys Rev E 62(4):5808

    ADS  Google Scholar 

  96. Nalbach P, Thorwart M (2010) Ultraslow quantum dynamics in a sub-ohmic heat bath. Phys Rev B 81(5):054308

    ADS  Google Scholar 

  97. Nalbach P, Ishizaki A, Fleming GR, Thorwart M (2011) Iterative path-integral algorithm versus cumulant time-nonlocal master equation approach for dissipative biomolecular exciton transport. New J Phys 13(6):063040

    Google Scholar 

  98. Golosov AA, Friesner RA, Pechukas P (1999) Efficient memory equation algorithm for reduced dynamics in spin-boson models. J Chem Phys 110(1):138

    ADS  Google Scholar 

  99. Cerrillo J, Cao J (2014) Non-Markovian dynamical maps: numerical processing of open quantum trajectories. Phys Rev Lett 112(11):110401

    ADS  Google Scholar 

  100. Buser M, Cerrillo J, Schaller G, Cao J (2017) Initial system-environment correlations via the transfer-tensor method. Phys Rev A 96(6):062122

    ADS  Google Scholar 

  101. Tanimura Y, Kubo R (1989) Time evolution of a quantum system in contact with a nearly gaussian-markoffian noise bath. J Phys Soc Jpn 58(1):101

    ADS  MathSciNet  Google Scholar 

  102. Tanimura Y (2014) Reduced hierarchical equations of motion in real and imaginary time: correlated initial states and thermodynamic quantities. J Chem Phys 141(4):044114

    ADS  Google Scholar 

  103. Tang Z, Ouyang X, Gong Z, Wang H, Wu J (2015) Extended hierarchy equation of motion for the spin-boson model. J Chem Phys 143(22):224112

    ADS  Google Scholar 

  104. Ma J, Sun Z, Wang X, Nori F (2012) Entanglement dynamics of two qubits in a common bath. Phys Rev A 85(6):062323

    ADS  Google Scholar 

  105. Duan C, Tang Z, Cao J, Wu J (2017) Zero-temperature localization in a sub-ohmic spin-boson model investigated by an extended hierarchy equation of motion. Phys Rev B 95(21):214308

    ADS  Google Scholar 

  106. Goan H-S, Jian C-C, Chen P-W (2010) Non-Markovian finite-temperature two-time correlation functions of system operators of a pure-dephasing model. Phys Rev A 82(1):012111

    ADS  Google Scholar 

  107. Guarnieri G, Smirne A, Vacchini B (2014) Quantum regression theorem and non-Markovianity of quantum dynamics. Phys Rev A 90:022110

    ADS  Google Scholar 

  108. Orús R (2014) A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann Phys (N.Y.) 349(Supplement C):117

    Google Scholar 

  109. Schuch N, Pérez-García D, Cirac I (2011) Classifying quantum phases using matrix product states and projected entangled pair states. Phys Rev B 84(16):165139

    ADS  Google Scholar 

  110. Verstraete F, Murg V, Cirac JI (2008) Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv Phys 57(2):143–224

    ADS  Google Scholar 

  111. Oseledets IV (2011) Tensor-train decomposition. SIAM J Sci Comput 33(5):2295

    MathSciNet  MATH  Google Scholar 

  112. Daley AJ, Kollath C, Schollwöck U, Vidal G (2004) Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces. J Stat Mech Theory Exp 2004(04):P04005

    MATH  Google Scholar 

  113. Eckart C, Young G (1936) The approximation of one matrix by another of lower rank. Psychometrika 1(3):211–218

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aidan Strathearn .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strathearn, A. (2020). Background. In: Modelling Non-Markovian Quantum Systems Using Tensor Networks. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-54975-6_2

Download citation

Publish with us

Policies and ethics