Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 526 Accesses

Abstract

The ever improving capability to investigate and control systems at the atomic-scale, such as trapped ionsĀ  [1] and quantum dotsĀ  [2], means that understanding the quantum mechanical nature of such systems is vital.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lv D, An S, Liu Z, Zhang J-N, Pedernales JS, Lamata L, Solano E, Kim K (2018) Quantum simulation of the quantum Rabi model in a trapped ion. Phys Rev X 8(2):021027

    Google ScholarĀ 

  2. Ramsay AJ, Gopal AV, Gauger EM, Nazir A, Lovett BW, Fox AM, Skolnick MS (2010) Damping of exciton Rabi rotations by acoustic phonons in optically excited InGaAs/GaAs quantum dots. Phys Rev Lett 104:017402

    Google ScholarĀ 

  3. Preskill J (2018) Quantum computing in the NISQ era and beyond. Quantum 2:79

    Google ScholarĀ 

  4. DiVincenzo D, Terhal B (1998) Decoherence: the obstacle to quantum computation. Phys World 11(3):53

    Google ScholarĀ 

  5. Devitt SJ, Munro WJ, Nemoto K (2013) Quantum error correction for beginners. Rep Prog Phys 76(7):076001

    ADSĀ  Google ScholarĀ 

  6. Chirolli L, Burkard G (2008) Decoherence in solid-state qubits. Adv Phys 57(3):225

    ADSĀ  Google ScholarĀ 

  7. Semonin OE, Luther JM, Beard MC (2012) Quantum dots for next-generation photovoltaics. Mater Today 15(11):508

    Google ScholarĀ 

  8. Yang Z, Fan JZ, Proppe AH, GarcĆ­a de Arquer FP, Rossouw D, Voznyy O, Lan X, Liu M, Walters G, Quintero-Bermudez R, Sun B, Hoogland S, Botton GA, Kelley SO, Sargent EH (2017) Mixed-quantum-dot solar cells. Nat Commun 8:1325

    ADSĀ  Google ScholarĀ 

  9. Nozik AJ (2002) Quantum dot solar cells. Phys E: Low-dimens Syst Nanostruct 14(1ā€“2):115

    ADSĀ  Google ScholarĀ 

  10. Uchiyama C, Munro WĀ J, Nemoto K (2018) Environmental engineering for quantum energy transport. npj Quantum Inf 4:33

    ADSĀ  Google ScholarĀ 

  11. Rebentrost P, Mohseni M, Kassal I, Lloyd S, Aspuru-Guzik A (2009) Environment-assisted quantum transport. New J Phys 11(3):033003

    Google ScholarĀ 

  12. Rivas Ɓ, Huelga SF (2012) Open Quantum Systems. Springer, Berlin

    MATHĀ  Google ScholarĀ 

  13. Breuer H-P, Petruccione F (2002) The Theory of Open Quantum Systems. Oxford University Press, Oxford

    MATHĀ  Google ScholarĀ 

  14. Weiss U (2012) Quantum Dissipative Systems. World Scientific

    Google ScholarĀ 

  15. Carmichael HJ (1999) Statistical Methods in Quantum Optics 1. Springer, Berlin

    MATHĀ  Google ScholarĀ 

  16. Walls DF, Milburn GJ (2007) Quantum Optics, 2nd edn. Springer, Berlin

    MATHĀ  Google ScholarĀ 

  17. Figueroa-Romero P, Modi K, Pollock FA (2019) Almost Markovian processes from closed dynamics. Quantum 3:136

    Google ScholarĀ 

  18. Gardiner C, Zoller P (2004) Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer Series in Synergetics. Springer, Berlin

    Google ScholarĀ 

  19. Lindblad G (1976) On the generators of quantum dynamical semigroups. Commun Math Phys 48(2):119

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  20. Gorini V (1976) Completely positive dynamical semigroups of n-level systems. J Math Phys 17(5):821

    ADSĀ  MathSciNetĀ  Google ScholarĀ 

  21. de Vega I, Alonso D (2017) Dynamics of non-Markovian open quantum systems. Rev Mod Phys 89:015001

    ADSĀ  MathSciNetĀ  Google ScholarĀ 

  22. Breuer H-P, Laine E-M, Piilo J, Vacchini B (2016) Colloquium: non-Markovian dynamics in open quantum systems. Rev Mod Phys 88:021002

    ADSĀ  Google ScholarĀ 

  23. Rivas Ɓ, Huelga SF, Plenio MB (2014) Quantum non-Markovianity: characterization, quantification and detection. Rep Prog Phys 77(9):094001

    ADSĀ  MathSciNetĀ  Google ScholarĀ 

  24. Grƶblacher S, Trubarov A, Prigge N, Cole GD, Aspelmeyer M, Eisert J (2015) Observation of non-Markovian micromechanical Brownian motion. Nat Commun 6:7606

    ADSĀ  Google ScholarĀ 

  25. Potočnik A, Bargerbos A, Schrƶder FAYN, Khan SA, Collodo MC, Gasparinetti S, SalathĆ© Y, Creatore C, Eichler C, TĆ¼reci HE, Chin AW, Wallraff A (2018) Studying light-harvesting models with superconducting circuits. Nat Commun 9:904

    ADSĀ  Google ScholarĀ 

  26. Liu B-H, Cao D-Y, Huang Y-F, Li C-F, Guo G-C, Laine E-M, Breuer H-P, Piilo J (2013) Photonic realization of nonlocal memory effects and non-Markovian quantum probes. Sci Rep 3:1781

    Google ScholarĀ 

  27. Liu B-H, Li L, Huang Y-F, Li C-F, Guo G-C, Laine E-M, Breuer H-P, Piilo J (2011) Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat Phys 7:931

    Google ScholarĀ 

  28. Liu Z-D, Lyyra H, Sun Y-N, Liu B-H, Li C-F, Guo G-C, Maniscalco S, Piilo J (2018) Experimental implementation of fully controlled dephasing dynamics and synthetic spectral densities. Nat Commun 9:3453

    ADSĀ  Google ScholarĀ 

  29. Thomas G, Siddharth N, Banerjee S, Ghosh S (2018) Thermodynamics of non-Markovian reservoirs and heat engines. Phys Rev E 97(6):062108

    ADSĀ  Google ScholarĀ 

  30. Bylicka B, Chruściński D, Maniscalco S (2014) Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective. Sci Rep 4:5720

    ADSĀ  Google ScholarĀ 

  31. Sakuldee F, Milz S, Pollock FA, Modi K (2018) Non-Markovian quantum control as coherent stochastic trajectories. J Phys A: Math Theor 51(41):414014

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  32. OrĆŗs R (2014) A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann Phys (N.Y.) 349(Supplement C):117

    Google ScholarĀ 

  33. Verstraete F, Murg V, Cirac JI (2008) Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv Phys 57(2):143ā€“224

    ADSĀ  Google ScholarĀ 

  34. Schuch N, PĆ©rez-GarcĆ­a D, Cirac I (2011) Classifying quantum phases using matrix product states and projected entangled pair states. Phys Rev B 84(16):165139

    ADSĀ  Google ScholarĀ 

  35. Cazalilla MA, Marston JB (2002) Time-dependent density-matrix renormalization group: a systematic method for the study of quantum many-body out-of-equilibrium systems. Phys Rev Lett 88(25):256403

    ADSĀ  Google ScholarĀ 

  36. Daley AJ, Kollath C, Schollwƶck U, Vidal G (2004) Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces. J Stat Mech Theory Exp 2004(04):P04005

    MATHĀ  Google ScholarĀ 

  37. Vidal G (2004) Efficient simulation of one-dimensional quantum many-body systems. Phys Rev Lett 93(4):040502

    ADSĀ  Google ScholarĀ 

  38. White SR (1992) Density matrix formulation for quantum renormalization groups. Phys Rev Lett 69(19):2863

    ADSĀ  Google ScholarĀ 

  39. Verstraete F, Cirac I (2006) Matrix product states represent ground states faithfully. Phys Rev B 73(9):094423

    ADSĀ  Google ScholarĀ 

  40. Schollwƶck U (2005) The density-matrix renormalization group. Rev Mod Phys 77(1):259

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  41. Chin AW, Rivas Ɓ, Huelga SF, Plenio MB (2010) Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials. J Math Phys 51(9):092109

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  42. Prior J, Chin AW, Huelga SF, Plenio MB (2010) Efficient simulation of strong system-environment interactions. Phys Rev Lett 105(5):050404

    ADSĀ  Google ScholarĀ 

  43. Chin AW, Prior J, Rosenbach R, Caycedo-Soler F, Huelga SF, Plenio MB (2013) The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigmentā€“protein complexes. Nat Phys 9(2):113

    Google ScholarĀ 

  44. Dyson FJ (1949) The radiation theories of Tomonaga, Schwinger, and Feynman. Phys Rev 75(3):486

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  45. Feynman RP (1951) An operator calculus having applications in quantum electrodynamics. Phys Rev 84(1):108

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  46. Jefferies B, Johnson GW, Kim BS (2006) Feynmanā€™s operational calculi: methods for iterative disentangling. Acta Applicandae Mathematicae 92(3):293ā€“309

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  47. Gill TL (2017) The Feynman-Dyson view. J Phys Conf Ser 845:012023

    Google ScholarĀ 

  48. Pollock FA, RodrĆ­guez-Rosario C, Frauenheim T, Paternostro M, Modi K (2018) Non-Markovian quantum processes: complete framework and efficient characterization. Phys Rev A 97:012127

    ADSĀ  Google ScholarĀ 

  49. JĆørgensen MR, Pollock FA (2019) Exploiting the causal tensor network structure of quantum processes to efficiently simulate non-Markovian path integrals. Phys Rev Lett 123:240602

    ADSĀ  MathSciNetĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aidan Strathearn .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strathearn, A. (2020). Introduction. In: Modelling Non-Markovian Quantum Systems Using Tensor Networks. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-54975-6_1

Download citation

Publish with us

Policies and ethics