Skip to main content

Microsurgical Anatomy of the White Matter Tracts

  • Chapter
  • First Online:
Principles of Neuro-Oncology

Abstract

White matter tracts (WMTs) are located in the subcortical region and are the primary drivers of connectivity of vital functions of the human cerebrum. In order to better conceptualize WMT anatomy, we have previously organized this system into a surgical scaffolding or framework, referred to as the “Chassis”, in order to develop a tool to create WMT-centered trajectories. WMTs can be generally classified into three categories, based on their location and primary function: commissural (coronal plane), association (sagittal plane), and projection (axial/craniocaudal). The corpus callosum is the largest commissural tract bundle in the brain, connecting both hemispheres, and is composed of the rostrum, genu, body, isthmus and splenium. Other important fibers include the anterior, posterior, and hippocampal commissural fibers. The thalamic peduncles communicate the cortex with subcortical centers. The cingulum bundle is located above the corpus callosum on the medial surface of the hemisphere and forms part of the limbic system along with the fornix, which is the main fiber system of the hippocampus. The visual pathway consists of the optic nerve, chiasm, optic tract, and optic radiations. The most important association fibers are the superior longitudinal fasciculus, which interconnect the frontal and parietal lobes, the inferior longitudinal fasciculus, which communicates with the temporal and occipital poles, and the inferior fronto-occipital fasciculus, which connects the frontal lobe to the parietal lobe. The most recent tracts which have been described in literature are the frontal aslant tract, which links the supplementary motor area with the language motor area, the sledge runner fasciculus, which is located on the medial surface of the occipitoparietal region, and the middle longitudinal fasciculus, which interconnects the temporal lobe with the parietal lobe. In this chapter, we will provide a detailed description of WMT anatomy according to the organization schema provided by the “Chassis”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schmahmann JD, Pandya DN. Historical evolution of facts and notions concerning the Organization of the Fiber Pathways of the brain. J Hist Neurosci. 2007;16:237–67.

    Article  Google Scholar 

  2. Mandonnet E, Sarubbo S, Petit L, Turner R. The nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification. Front Neuroanat. 2018;12(November):1–14. https://doi.org/10.3389/fnana.2018.00094.

    Article  Google Scholar 

  3. Agrawal A, Kapfhammer JP, Kress A, et al. Josef Klingler’s models of white matter tracts: influences on neuroanatomy, neurosurgery, and neuroimaging. Neurosurgery. 2011;69(2):238–54. https://doi.org/10.1227/NEU.0b013e318214ab79.

    Article  PubMed  Google Scholar 

  4. Jennings JE, Kassam AB, Fukui MB, et al. The surgical white matter chassis: a practical 3-dimensional Atlas for planning subcortical. Oper Neurosurg. 2017;14(5):469–82. https://doi.org/10.1093/ons/opx177.

  5. Basser PJ, Matiello J, LeBihan D. MR Diffusion Tensor Spectroscopy and Imaging. Biophys J. 1994;66(1):259-67. https://doi.org/10.1016/S0006-3495(94)80775-1.

  6. Baydin S, Gungor A, Tanriover N, Baran O, Middlebrooks EH, Rhoton AL. Fiber tracts of the medial and inferior surfaces of the cerebrum. World Neurosurg. 2017;98:34–49. https://doi.org/10.1016/j.wneu.2016.05.016.

    Article  PubMed  Google Scholar 

  7. Hofer S, Frahm J. Topography of the human corpus callosum revisited-comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage. 2006;32(3):989–94. https://doi.org/10.1016/j.neuroimage.2006.05.044.

    Article  PubMed  Google Scholar 

  8. Fernández-Miranda JC, Rhoton ALJ, Álvarez-Linera J, Kakizawa Y, Choi C, De Oliveira EP. Three-dimensional microsurgical and Tractographic anatomy of the white matter of the human brain. Neurosurgery. 2008;62(6):989–1028. https://doi.org/10.1227/01.NEU.0000297076.98175.67.

    Article  PubMed  Google Scholar 

  9. Aboitiz F, Montiel J. One hundred million years of interhemispheric communication: the history of the corpus callosum. Brazilian J Med Biol Res. 2003;36(4):409–20. https://doi.org/10.1590/S0100-879X2003000400002.

    Article  CAS  Google Scholar 

  10. Goldstein A, Mesfin FB (2018) Neuroanatomy, corpus callosum In: NCBI Bookshelf, pp 8–11

    Google Scholar 

  11. De Benedictis A, Petit L, Descoteaux M, et al. New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography. Hum Brain Mapp. 2016;37(12):4718–35. https://doi.org/10.1002/hbm.23339.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kucukyuruk B, Yagmurlu K, Tanriover N, Uzan M, Rhoton AL. Microsurgical anatomy of the white matter tracts in hemispherotomy. Neurosurgery. 2014;10(2):305–24. https://doi.org/10.1227/NEU.0000000000000288.

    Article  PubMed  Google Scholar 

  13. Güngör A, Baydin S, Middlebrooks EH, Tanriover N, Isler C, Rhoton AL. The white matter tracts of the cerebrum in ventricular surgery and hydrocephalus. J Neurosurg. 2016;126(3):945–71. https://doi.org/10.3171/2016.1.JNS152082.

    Article  PubMed  Google Scholar 

  14. Beevor C. On the course of the fibres of the cingulum and the posterior parts of the Corpus callosum and fornix in the marmoset monkey. Philos Trans R Soc London B. 1890;182:135–99.

    Google Scholar 

  15. Wu Y, Sun D, Wang Y, Wang Y, Ou S. Segmemntation of the cingulum bundle in the human brain: A new perspective based on DSI tractography and fiber dissection study. Front Neuroanat. 2016;10:1–16. https://doi.org/10.3389/fnana.2016.00084.

  16. Schmahmann JD, Smith EE, Eichler FS, Filley CM. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann N Y Acad Sci. 2008;1142:266–309. https://doi.org/10.1196/annals.1444.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bozkurt B, Yagmurlu K, Middlebrooks EH, et al. Microsurgical and Tractographic anatomy of the supplementary motor area complex in humans. World Neurosurg. 2016;95:99–107. https://doi.org/10.1016/j.wneu.2016.07.072.

    Article  PubMed  Google Scholar 

  18. Baker CM, Burks JD, Briggs RG, et al. A connectomic atlas of the human cerebrum-chapter 4: the medial frontal lobe, anterior cingulate gyrus, and orbitofrontal cortex. Oper Neurosurg (Hagerstown, Md). 2018;15(1):S122–74. https://doi.org/10.1093/ons/opy257.

    Article  Google Scholar 

  19. Fernández-Miranda JC, Rhoton AL, Álvarez-Linera J, Kakizawa Y, Choi C, De Oliveira EP. Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery. 2008;62(6 SUPPL):989–1028. https://doi.org/10.1227/01.NEU.0000297076.98175.67.

    Article  PubMed  Google Scholar 

  20. Vergani F, Mahmodd S, Morris CM, Mitchell P, Forkel S. Intralobar fibers of the occipital lobe: A post mortem dissection study. Cortex. 2014;56:145–56. https://doi.org/10.1016/j.cortex.2014.03.002.

  21. Koutsarnakis C, Kalyvas AV, Skandalakis GP, et al. Sledge runner fasciculus: anatomic architecture and tractographic morphology. Brain Struct Funct. 2019;224(3):1051–66. https://doi.org/10.1007/s00429-018-01822-4.

    Article  PubMed  Google Scholar 

  22. Serra C, Ture U, Krayenbu N, Glgun S, DCH Y, Yasargil MG. Topographic classification of the thalamus surfaces related to microneurosurgery: a white matter fiber microdissection study. World Neurosurg. 2017;97:438–52. https://doi.org/10.1016/j.wneu.2016.09.101.

    Article  PubMed  Google Scholar 

  23. Rhoton AL. The cerebrum. Neurosurgery. 2002;51:S1–42. https://doi.org/10.1227/01.NEU.0000028086.48597.4F.

    Article  PubMed  Google Scholar 

  24. Petrides M, Pandya DN. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol. 1984;116:105–16.

    Article  Google Scholar 

  25. Wang X, Pathak S, Stefaneanu L, Yeh FC, Li S, Fernández-Miranda JC. Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain. Brain Struct Funct. 2016;221:2075–92. https://doi.org/10.1007/s00429-015-1028-5.

    Article  PubMed  Google Scholar 

  26. Monroy Sosa A, Jennings J, Chakravarthi S, et al. Microsurgical anatomy of the vertical rami of the superior longitudinal fasciculus: An intraparietal sulcus dissection study. Oper. Neurosurg. 2019;16(2):226–238. https://doi.org/10.1093/ons/opy077.

  27. Conner AK, Briggs RG, Rahimi M, et al. A connectomic atlas of the human cerebrum supplement a connectomic atlas of the human cerebrum—Chapter 10: tractographic description of the superior longitudinal fasciculus. Oper Neurosurg. 2018;00(00):407–22. https://doi.org/10.1093/ons/opy264.

    Article  Google Scholar 

  28. Yagmurlu K, Middlebrooks EH, Tanriover N, Rhoton AL. Fiber tracts of the dorsal language stream in the human brain. J Neurosurg. 2016;124(5):1396–405. https://doi.org/10.3171/2015.5.JNS15455.

    Article  PubMed  Google Scholar 

  29. Goryaynov SA, Kondrashov AV, Gol’dberg MF, et al. Long association tracts of the human white matter: an analysis of 18 hemisphere dissections and in vivo HARDI-CSD tractography. Probl Neurosurg. 2017;81(1):13. https://doi.org/10.17116/neiro201780713-25.

    Article  Google Scholar 

  30. Lawes INC, Barrick TR, Murugam V, et al. Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage. 2008;39(1):62–79. https://doi.org/10.1016/j.neuroimage.2007.06.041.

  31. Baker CM, Burks JD, Briggs RG, et al. The crossed frontal aslant tract: A possible pathway involved in the recovery of supplementary motor area syndrome. Brain Behav. 2018;5;8(3):e00926. https://doi.org/10.1002/brb3.926.

  32. Lawes INC, Barrick TR, Murugam V, et al. Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. NeuroImage. 2008;39(1):62–79. https://doi.org/10.1016/j.neuroimage.2007.06.041.

    Article  PubMed  Google Scholar 

  33. Fernández-Miranda JC, Rhoton AL, Kakizawa Y, Choi C, Álvarez-Linera J. The claustrum and its projection system in the human brain: a microsurgical and tractographic anatomical study. J Neurosurg. 2008;108(4):764–74. https://doi.org/10.3171/jns/2008/108/4/0764.

    Article  PubMed  Google Scholar 

  34. Milardi D, Bramanti P, Milazzo C, et al. Cortical and subcortical connections of the human claustrum revealed in vivo by constrained spherical deconvolution tractography. Cereb Cortex. 2015;25(2):406–414. https://doi.org/10.1093/cercor/bht231.

  35. Makris N (1999) Delineation of human association fiber pathways using histologic and magnetic resonance methodologies. Behav Neurosci

    Google Scholar 

  36. Wang Y, Fernández-Miranda JC, Verstynen T, Pathak S, Schneider W, Yeh FC. Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. Cereb Cortex. 2013;23(10):2347–56. https://doi.org/10.1093/cercor/bhs225.

    Article  PubMed  Google Scholar 

  37. Maldonado IL, De Champfleur NM, Velut S, Destrieux C, Zemmoura I, Duffau H. Evidence of a middle longitudinal fasciculus in the human brain from fiber dissection. J Anat. 2013;223(1):38–45. https://doi.org/10.1111/joa.12055.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu Y, Sun D, Wang Y, Wang Y. Subcomponents and connectivity of the inferior Fronto-occipital fasciculus revealed by diffusion Spectrum imaging Fiber tracking. Front Neuroanat. 2016;10:1–13. https://doi.org/10.3389/fnana.2016.00088.

    Article  CAS  Google Scholar 

  39. Martino J, Brogna C, Robles SG, Vergani F, Duffau H, Catani M. Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data 5. Cortex. 2010;46(5):691–9. https://doi.org/10.1016/j.cortex.2009.07.015.

    Article  PubMed  Google Scholar 

  40. De Benedictis A, Sarubbo S, Duffau H. Subcortical surgical anatomy of the lateral frontal region: human white matter dissection and correlations with functional insights provided by intraoperative direct brain stimulation. J Neurosurg. 2012;117(6):1053–69. https://doi.org/10.3171/2012.7.JNS12628.

    Article  PubMed  Google Scholar 

  41. Panesar SS, Yeh F, Deibert CP, et al. A diffusion spectrum imaging-based tractographic study into the anatomical subdivision and cortical connectivity of the ventral external capsule: uncinate and inferior fronto-occipital fascicles. Neuroradiology. 2017;59:971–87. https://doi.org/10.1007/s00234-017-1874-3.

  42. Hau J, Sarubbo S, Perchey G, et al. Cortical terminations of the inferior Fronto-occipital and Uncinate fasciculi: anatomical stem-based virtual dissection. Front Neuroanat. 2016;10(May):1–14. https://doi.org/10.3389/fnana.2016.00058.

    Article  Google Scholar 

  43. Ebeling U, Cramon Dv. Topography of the uncinate fascicle and adjacent temporal fiber tracts. Acta Neurochir 1992;115(3–4):143–148. doi:https://doi.org/10.1007/BF01406373.

  44. Hau J, Sarubbo S, Houde JC, et al. Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation. Brain Struct Funct. 2016;222(4):1645–62. https://doi.org/10.1007/s00429-016-1298-6.

    Article  PubMed  Google Scholar 

  45. Dick AS, Bernal B, Tremblay P. The language connectome: new pathways, new concepts. Neurosci. 2014;20(5):453–67. https://doi.org/10.1177/1073858413513502.

    Article  Google Scholar 

  46. Briggs RG, Rahimi M, Sali G, et al. A connectomic atlas of the human cerebrum—chapter 15: tractographic description of the uncinate fasciculus. Oper Neurosurg. 2018;00(00):450–5. https://doi.org/10.1093/ons/opy269.

    Article  Google Scholar 

  47. Latini F, Mårtensson J, Larsson E, Fredrikson M, Åhs F. Segmentation of the inferior longitudinal fasciculus in the human brain: a white matter dissection and diffusion tensor tractography study. Brain Res. 1675;2017:102–15. https://doi.org/10.1016/j.brainres.2017.09.005.

    Article  CAS  Google Scholar 

  48. Panesar SS, Yeh F, Jacquesson T, Hula W, Fernández-Miranda JC. A quantitative Tractography study into the connectivity, segmentation and laterality of the human inferior longitudinal fasciculus. Front Neuroanat. 2018;12(June):1–13. https://doi.org/10.3389/fnana.2018.00047.

    Article  Google Scholar 

  49. Ashtari M. Anatomy and functional role of the inferior longitudinal fasciculus: a search that has just begun. Dev Med Child Neurol. 2012;54:4–7. https://doi.org/10.1111/j.1469-8749.2011.04122.x.

    Article  Google Scholar 

  50. Baydin S, Gungor A, Tanriover N, Baran O, Middlebrooks E, Rhoton AL. Fiber tracts of the medial and inferior surfaces of the cerebrum. World Neurosurg. 2016; https://doi.org/10.1016/j.wneu.2016.05.016.This.

  51. Wu W, Rigolo L, O’Donnell LJ, Northon I, Shriver S, Golby AJ. Visual pathway study using in vivo DTI Tractography to complement classical anatomy. Neurosurgery. 2012;70:1–19. https://doi.org/10.1227/NEU.0b013e31822efcae.Visual.

    Article  Google Scholar 

  52. De Moraes CG. Anatomy of the visual pathways. J Glaucoma. 2013;22(5 Suppl.1):2–7. https://doi.org/10.1097/IJG.0b013e3182934978.

    Article  Google Scholar 

  53. Rhoton AL. The Sellar region. Neurosurgery. 2002;51:335–74. https://doi.org/10.1227/01.NEU.0000028680.51299.00.

    Article  Google Scholar 

  54. Párraga RG, Ribas GC, Welling LC, Alves RV, De Oliveira E. Microsurgical anatomy of the optic radiation and related fibers in 3-dimensional images. Neurosurgery. 2012;71(SUPPL.1):160–72. https://doi.org/10.1227/NEU.0b013e3182556fde.

    Article  PubMed  Google Scholar 

  55. Sarubbo S, De Benedictis A, Milani P, et al. The course and the anatomo-functional relationships of the optic radiation: a combined study with “post mortem” dissections and “in vivo” direct electrical mapping. J Anat. 2015;226(1):47–59. https://doi.org/10.1111/joa.12254.

    Article  PubMed  Google Scholar 

  56. Rubino PA, Rhoton AL, Tong X, De Oliveira E. Three-dimensional relationships of the optic radiation. Neurosurgery. 2005;57(4 SUPPL):219–27. https://doi.org/10.1227/01.NEU.0000176415.83417.16.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Monroy-Sosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cortes-Contreras, A.P. et al. (2021). Microsurgical Anatomy of the White Matter Tracts. In: Monroy-Sosa, A., Chakravarthi, S.S., de la Garza-Salazar, J.G., Meneses Garcia, A., Kassam, A.B. (eds) Principles of Neuro-Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-54879-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54879-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54878-0

  • Online ISBN: 978-3-030-54879-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics