Skip to main content

Radiotherapy in Brain Tumors

  • Chapter
  • First Online:
Principles of Neuro-Oncology

Abstract

The incidence of primary brain tumors treated with RT in adults is low in relation with other tumors of the body, the most frequent tumors are gliomas, of adult gliomas, 80% are high-grade and 20% are low-grade. Patients with some mutation and codeletions have a significantly better prognosis and molecular analyses play an important role in treatment. Historically, radiotherapy has been a primordial therapeutic tool in patients with brain tumors, especially in the malign ones. Doses of 45–54 Gy are recommended in the treatment of low-grade gliomas with postoperative radiotherapy and reducing toxicity and dose of 60 Gy is used for high grade gliomas without benefit for a dose-escalation. This chapter will focus on the current and evolving concepts of RT in brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shabihkhani M, Telesca D, Movassaghi M, Naeini YB, Naeini KM, Hojat SA, et al. Incidence, survival, pathology, and genetics of adult Latino Americans with glioblastoma. J Neurooncol. 2017;132(2):351–8.

    Article  PubMed  Google Scholar 

  2. Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;4447120:756.

    Article  CAS  Google Scholar 

  3. Pearl LH, Schierz AC, Ward SE, et al. Therapeutic opportunities within the DNA damage response. Nat Rev Cancer. 2015;153:166–80.

    Article  CAS  Google Scholar 

  4. Walker MD, Green SB, Byar DP, et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med. 1980;303:1323–9.

    Article  CAS  PubMed  Google Scholar 

  5. Andersen AP. Postoperative irradiation of glioblastomas. Results in a randomized series. Acta Radiol Oncol Radiat Phys Biol. 1978;17:475–84.

    Article  CAS  PubMed  Google Scholar 

  6. Sandberg-Wollheim M, Malmström P, Strömblad LG, et al. A randomized study of chemotherapy with procarbazine, vincristine, and lomustine with and without radiation therapy for astrocytoma grades 3 and/or 4. Cancer. 1991;68:22–9.

    Article  CAS  PubMed  Google Scholar 

  7. Uihlein A, Colby MY, Layton DD, Parsons WR, Garter TL. Comparison of surgery and surgery plus irradiation in the treatment of supratentorial gliomas. Acta Radiol. 1966;5(1):67–78.

    Article  CAS  Google Scholar 

  8. Kramer S. Proceedings: radiation therapy in the management of malignant gliomas. Proc Natl Cancer Conf. 1972;7:823–6.

    CAS  PubMed  Google Scholar 

  9. Stage WS, Stein JJ. Treatment of malignant astrocytomas. Am J Roentgenol. 1974;120(1):7–18.

    Article  CAS  Google Scholar 

  10. Walker MD, Strike TA. Evaluation of methyl CCNU, BCNU and radiotherapy in treatment of malignant glioma. Proc Am Assoc Cancer Res. 1976;March:163.

    Google Scholar 

  11. Walker MD, Strike TA, Sheline GE. An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys. 1979;10:1725–31.

    Article  Google Scholar 

  12. Walker MD, Green SB, Byar DP, Alexander E Jr, Batzdorf U, Brooks WH, Hunt WE, MacCarty CS, Robertson JT, Shapiro WR. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med. 1980;303(23):1323–9. https://doi.org/10.1056/NEJM198012043032303.

    Article  CAS  PubMed  Google Scholar 

  13. Salazar OM, Rubin P, Feldstein ML, Pizzutiello R. High dose radiation therapy in the treatment of malignant gliomas: final report. Int J Radiat Oncol Biol Phys. 1979;10:1733–40.

    Article  Google Scholar 

  14. Chang CH, Horton J, Schoenfeld D, Salazer O. Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas. A joint radiation therapy oncology group and eastern cooperative oncology group study. Cancer. 1983;52(6):997–1007.

    Article  CAS  PubMed  Google Scholar 

  15. Salazar OM, Rubin P. The spread of glioblastoma multiforme as a determining factor in the radiation treated volume. Int J Radiat Oncol Biol Phys. 1976;1(7–8):627–37.

    Article  CAS  PubMed  Google Scholar 

  16. Salazar OM, Rubin P, McDonald JV, Feldstein ML. Patterns of failure in intracranial astrocytomas after irradiation: analysis of dose and field factors. AJR Am J Roentgenol. 1976;126(2):279–92. https://doi.org/10.2214/ajr.126.2.279.

    Article  CAS  PubMed  Google Scholar 

  17. Prados MD, Wara WM, Sneed PK. Phase III trial of accelerated hyperfracctionation whit or without difluromethylornithine (DFMO) versus standard fracctionates radiotherapy with or without DFMO for newly diagnosed patients with glioblastoma multiforme. Int J Radiot Oncol Biol Phys. 2001;49(1):71–7.

    Article  CAS  Google Scholar 

  18. Werner-Wasik M, Scott CB. Final Report of a phase I/II trial of hiperfraccionated and accelerated hyperfraccionated radiation therapy with carmustine for adults with supratentorial malignant gliomas. Radiation Therapy Oncology Group Study 83-02. Cancer. 1996 Apr 15;77(8):1535–43.

    Article  CAS  PubMed  Google Scholar 

  19. Chan TA, Weingart JD, Parisi M, et al. Treatment of recurrent glioblastoma multiforme with GliaSite brachytherapy. Int J Radiat Oncol Biol Phys. 2005;62:1133–9.

    Article  PubMed  Google Scholar 

  20. Tatter SB, Shaw EG, Rosenblum ML, et al. An inflatable balloon catheter and liquid 125I radiation source (GliaSite Radiation Therapy System) for treatment of recurrent malignant glioma: multicentesafety and feasibility trial. J Neurosurg. 2003;99:297–303.

    Article  PubMed  Google Scholar 

  21. Khan L, Soliman H, Perry J. External beam radiation dose escalation for high grade glioma. Cochrane Database Syst Rev. 2016 Aug 19;8:CD011475. https://doi.org/10.1002/14651858.CD011475.pub2.

    Article  Google Scholar 

  22. Concannon JP, Kramer S, Berry R. The extent of intracranial gliomata at autopsy and its relationship to techniques used in radiation therapy of brain tumors. Am J Roentgenol Radium Ther Nucl Med. 1960;84:99–107.

    CAS  PubMed  Google Scholar 

  23. Chavaudra J, Bridier A. Definition of volumes in external radiotherapy: ICRU reports 50 and 62. Cancer Radiother. 2001;5:472–8.

    Article  CAS  PubMed  Google Scholar 

  24. Marks JE, Bagĺan RJ, Prassad SC. Cerebral radionecrosis: incidence and risk in relation to dose, time, fractionation and volume. Int J Radiat Oncol Biol Phys. 1981;7(2):243–52.

    Article  CAS  PubMed  Google Scholar 

  25. Shapiro WR, Green SB, Burger PC, Mahaley MS Jr, et al. Randomized trial of three chemotherapy regimens and two radiotherapy regimens and two radiotherapy regimens in postoperative treatment of malignant glioma. Brain tumor cooperative group trial 8001. J Neurosurg. 1989;71(1):1–9. https://doi.org/10.3171/jns.1989.71.1.0001.

    Article  CAS  PubMed  Google Scholar 

  26. Schryver AD, Greitz T, Forsby N, Brun A. Localized shaped field radiotherapy of malignant glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 1976;1(7–8):713–6.

    Article  CAS  PubMed  Google Scholar 

  27. Gross MW, Weber WA, Feldmann HJ, et al. The value of F-18-fluorodeoxyglucose PET for the 3-D radiation treatment planning of malignant gliomas. Int J Radiat Oncol Biol Phys. 1998;41:989–95.

    Article  CAS  PubMed  Google Scholar 

  28. Jansen EP, Dewit LG, van Herk M, Bartelink H. Target volumes in radiotherapy for high-grade malignant glioma of the brain. Radiother Oncol. 2000;56:151–6.

    Article  CAS  PubMed  Google Scholar 

  29. Pirzkall A, McKnight TR, Graves EE. MR-spectroscopy guided target delineation for high-grade gliomas. Int J Radiat Oncol Biol Phys. 2001;4:915–28. https://doi.org/10.1016/S0360-3016(01)01548-6.

    Article  Google Scholar 

  30. Niyazi M, Brada M, Chalmers AJ. ESTRO-ACROP guideline “target delineation of Gliobastomas”. Radiother Oncol. 2016;118(1):35–42.

    Article  PubMed  Google Scholar 

  31. Hofmaier J, Kantz S. Hipopcampal sparing radiotherapy for glioblastoma patients: a planning study using volumetric modulated arc therapy. Radiat Oncol. 2016;11(1):118. https://doi.org/10.1186/s13014-016-0695-6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hermanto U, Frija EK, Lii MJ, et al. Intensity-modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy for high-grade gliomas: does IMRT increase the integral dose to normal brain? Int J Radiat Oncol Biol Phys. 2007;67:1135–44.

    Article  PubMed  Google Scholar 

  33. Navarria P, Pessina F, Cozzi L, et al. Can advanced new radiation therapy technologies improve outcome of high-grade glioma (HGG) patients? Analysis of 3D-conformal radiation therapy (3DCRT) versus volumetric-modulated arc therapy (VMAT) in patients treated with surgery, concomitant and adjuvant chemo-radiation therapy. BMC Cancer. 2016;16:362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Davidson MT, Masucci GL, Follwell M, et al. Single arc volumetric modulated arc therapy for complex brain gliomas: is there an advantage compared with intensity modulated radiation therapy or by adding a partial arc? Technol Cancer Res Treat. 2012;11:211–20.

    Article  CAS  PubMed  Google Scholar 

  35. International Commission on Radiation Units and Measurements. Report 83: prescribing, recording, and reporting photon-beam Intensity Modulated Radiation Therapy (IMRT). J ICRU. 2010;10:NP. https://doi.org/10.1093/jicru/ndq002.

  36. MacDonald S, Ahmad S, Kachris S, Vogds B, Derouen M, Gittleman A, et al. Intensity modulated radiation therapy versus three-dimensional conformal radiation therapy for the treatment of high grade glioma: a dosimetric comparison. J Appl Clin Med Phys. 2008;8:49–60.

    Google Scholar 

  37. Lorentini S, Amelio D, Giri M, Fellin F, Meliardo G, Rizzotti A, et al. IMRT or 3D-CRT in glioblastoma? A dosimetric criterion for patient selection. Tech Canc Res Treat. 2013;5:411–20.

    Article  Google Scholar 

  38. Katsigiannis S, Krischeck B, Berleanu S. Impact of time to initiation of radiotherapy on survival after resection of newly diagnoses glioblastoma. Radiat Oncol. 2019;14:73–80.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gorlia T, van den Bent MJ, Hegi ME, et al. Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncol. 2008;9:29–38.

    Article  PubMed  Google Scholar 

  40. Curran WJ, Scott CB, Horton J, et al. Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst. 1993;85:704–10.

    Article  PubMed  Google Scholar 

  41. Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Eckel-Passow JE, Lachance DH, Molinaro AM, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in Tumors. N Engl J Med. 2015;372:2499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stupp R, Mason WP, van den Bent M, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.

    Article  CAS  PubMed  Google Scholar 

  45. Hegi ME, Diserens A-C, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352:997–1003.

    Article  CAS  PubMed  Google Scholar 

  46. Hegi ME, Liu L, Herman JG, et al. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol. 2008;26:4189–99.

    Article  CAS  PubMed  Google Scholar 

  47. Bingham B, Patel CG, Shinohara ET. Utilizacion of hypofractionated radiotherapy in treatment of glioblastoma multiforme in elderly patients not receiving adjuvant chemoradiotherapy: a National Cancer Database Analysis. J Neuroncol. 2018;136(2):385–94. https://doi.org/10.1007/s1160-017-2665-8.

    Article  Google Scholar 

  48. Palmer JD, Bhamidipati D, Mehta M. Treatment recommendations for elderly patients with newly diagnosed glioblastoma lack worldwide consensus. J Neuro-Oncol. 2018;140(2):421–6. https://doi.org/10.1007/s11060-018-2969-3.

    Article  Google Scholar 

  49. Braun K, Ahluwalia MS. Treatment of glioblastoma in older adults. Curr Oncol Rep. 2017;19:81. https://doi.org/10.1007/s11912-017-0644-z.

    Article  CAS  PubMed  Google Scholar 

  50. Gzell C, Wheeler H, Guo L, Kastelan M. Elderly patients aged 65-75 years with glioblastoma multiforme may benefit from long course radiation therapy with temozolomide. J Neuro-Oncol. 2014;119(1):187–96. https://doi.org/10.1007/s11060-014-1472-8.

    Article  CAS  Google Scholar 

  51. Malmstrom A, Gronberg BH, Marosi C, Stupp R. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic Journal of Neuro-Oncology. A randomised, phase 3 trial. Lancet Oncol. 2012;13(9):916–26. https://doi.org/10.1016/s1470-2045(12)70265-6.7.

    Article  PubMed  Google Scholar 

  52. Roa W, Brasher PM, Bauman G. Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. J Clin Oncol. 2004;22(9):1583–8. https://doi.org/10.1200/jco.2004.06.082.

    Article  CAS  PubMed  Google Scholar 

  53. Uto M, Mizowaki T, Ogura K, Arakawa Y. Feasibility evaluation of hypofractionated radiotherapy with concurrent temozolomide in elderly patients with glioblastoma. Int J Clin Oncol. 2016;1(6):1023–9. https://doi.org/10.1007/s10147-016-1014-9.

    Article  CAS  Google Scholar 

  54. Bell EH, Pugh SL, McElroy JP, Gilbert MR, Mehta M. Molecular-based recursive partitioning analysis model for glioblastoma in the temozolomide era: a correlative analysis based on NRG oncology RTOG 0525. JAMA Oncol. 2017;3(6):784–92. https://doi.org/10.1001/jamaoncol.2016.6020.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Combs SE, Edler L, Rausch R. Generation and validation of a prognostic score to predict outcome after re-irradiation of recurrent glioma. Acta Oncol. 2012;52:147e152.

    Google Scholar 

  56. Straube C, Elpula G, Gempt J, Gerhardt J, et al. Re-irradiation after gross total resection of recurrent glioblastoma. Strahlenther Onkol. 2017;352:1e13. https://doi.org/10.1007/s00066-017-1161-6.

    Article  Google Scholar 

  57. Jones B, Grant W. Retreatment of central nervous system tumours. Clin Oncol. 2014;26:407e418. https://doi.org/10.1016/j.clon.2014.04.027.

    Article  Google Scholar 

  58. Minniti G, Armosini V, Salvati M, Lanzetta G, Caporello P, Mei M, et al. Fractionated stereotactic reirradiation and concurrent temozolomide in patients with recurrent glioblastoma. J Neurooncol. 2011;103:683e691. https://doi.org/10.1007/s11060-010-0446-8.

    Article  Google Scholar 

  59. Flieger M, Ganswindt U, Schwarz SB, et al. Re-irradiation and bevacizumab in recurrent high-grade glioma: an effective treatment option. J Neurooncol. 2014;117:337e345. https://doi.org/10.1007/s11060-014-1394-5.

    Article  CAS  Google Scholar 

  60. Hottinger AF, Pacheco P, Stupp R. Tumor treating fields: a novel treatment modality and its use in brain tumors. Neuro Oncol. 2016;18:1338–49. https://doi.org/10.1093/neuonc/now182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mehta M, Wen P, Nishikawa R, Reardon D, Peters K. Critical Reviews in Oncology/Hematology Critical review of the addition of tumor treating fields (TTFields) to the existing standard of care for newly diagnosed glioblastoma patients. Crit Rev Oncol Hematol. 2017;111:60–5. https://doi.org/10.1016/j.critrevonc.2017.01.005.

    Article  CAS  PubMed  Google Scholar 

  62. Stupp R, Taillibert S, Kanner AA, Kesari S. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma. JAMA. 2015;314:2535–43. https://doi.org/10.1001/jama.2015.16669.

    Article  CAS  PubMed  Google Scholar 

  63. Taphoorn MJB, Dirven L, Kanner AA, et al. Influence of treatment with tumor-treating fields on health-related quality of life of patients with newly diagnosed glioblastoma: a secondary analysis of a randomized clinical trial. JAMA Oncol. 2018;4(4):495–504. https://doi.org/10.1001/jamaoncol.2017.5082.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Reardon DA, Omuro A, Brandes AA, Rieger J, Wick A, Sepulveda J, et al. OS10.3 randomized phase 3 study evaluating the efficacy and safety of nivolumab vs bevacizumab in patients with recurrent glioblastoma: CheckMate 143. Neuro Oncol. 2017;19:21. https://doi.org/10.1093/neuonc/nox036.071.

    Article  Google Scholar 

  65. Mann J, Ramakrishna R, Magge R. Advances in radiotherapy for glioblastoma. Front Neurol. 2018;8:748. https://doi.org/10.3389/fneur.2017.00748.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Touat M, Idbaih A, Sanson M, Ligon KL. Glioblastoma targeted therapy: updated approaches from recent biological insights. Ann Oncol. 2017;28:1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rigau V. Histological classification. In: Duffau H, editor. Diffuse low-grade gliomas in adults: natural history, interaction with the brain, and new individualized therapeutic strategies. London: Springer; 2013.

    Google Scholar 

  68. Pignatti F, van den Bent M, Curran D, Debruyne C, European organization for R, treatment of cancer brain tumor cooperative G, European organization for treatment of cancer radiotherapy cooperative G. Prognostic factors for survival in adult patients with cerebral low-grade glioma. J Clin Oncol. 2002;20(8):2076–84.

    Article  PubMed  Google Scholar 

  69. Gorlia T, Wu W, Wang M, Baumert BG. New validated prognostic models and prognostic calculators in patients with low-grade gliomas diagnosed by central pathology review: a pooled analysis of EORTC/RTOG/NCCTG phase III clinical trials. Neuro-oncology. 2013;15(11):1568–79. https://doi.org/10.1093/neuonc/not117.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Manuel Sarmiento J, Venteicher AS, Patil CG. Early versus delayed postoperative radiotherapy for treatment of low-grade gliomas. Cochrane Database Syst Rev. 2015;6:CD009229.

    Google Scholar 

  71. Kiebert GM, Curran D, Aaronson NK, et al. Quality of life after radiation therapy of cerebral low-grade gliomas of the adult: results of a randomised phase III trial on dose response (EORTC trial 22844). EORTC Radiotherapy Co-operative Group. Eur J Cancer. 1998;34:1902–9.

    Article  CAS  PubMed  Google Scholar 

  72. van den Bent MJ, Afra D, de Witte O, et al. EORTC Radiotherapy and Brain Tumor Groups and the UK Medical Research Council. Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet. 2005;366:985–990.

    Google Scholar 

  73. Douw L, Klein M, Fagel SS, et al. Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term follow-up. Lancet Neurol. 2009;8:810–8.

    Article  PubMed  Google Scholar 

  74. Seiz M, Freyschlag CF, Schenkel S, et al. Management of patients with low-grade gliomas—a survey among German neurosurgical departments. Cent Eur Neurosurg. 2011;72:186–91.

    CAS  PubMed  Google Scholar 

  75. Wick W, Meisner C, Hentschel B, Platten M, Schilling A, Wiestler B, et al. Prognostic or predictive value of MGMT promoter methylation in gliomas depends on IDH1 mutation. Neurology. 2013;81(17):1515–22.

    Article  CAS  PubMed  Google Scholar 

  76. Forst DA, Nahed BV, Loeffler JS, Batchelor TT. Low-grade gliomas. The Oncologist. 2014;19(4):403–13.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Van den Bent MJ, Baumert B, Erridge SC, et al. Interim results from the CATNON trial (EORTC study 26053–22054) of treatment with concurrent and adjuvant temozolomide for 1p/19q non-co-deleted anaplastic glioma: a phase 3, randomised, openlabel intergroup study. Lancet. 2017;390(10103):1645–53.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Baumert BG, Hegi ME, den Bent V. Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033-26033): a randomised, open-label, phase 3 intergroup study. Lancet Oncol. 2016;17:1521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Buckner JC, Shaw EG, Pugh SL, et al. Radiation plus procarbazine, CCNU, and vincristine in low grade glioma. N Engl J Med. 2016;374(14):1344–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Abrunhosa-Branquinho AN, Bar-Deroma R, Collette S. Radiotherapy quality assurance for the RTOG 0834/EORTC 26053-22054/NCIC CTG CEC.1/CATNON intergroup trial ‘concurrent and adjuvant temozolomide chemotherapy in newly diagnosed non-1p/19q deleted anaplastic glioma’: individual case review analysis. Radiother Oncol. 2018;127:292–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Karim AB, Maat B, Hatlevoll R, Menten J, Rutten EH. A randomized trial on dose-response in radiation therapy of low-grade cerebral glioma: European Organization for Research and Treatment of Cancer (EORTC) Study 22844. Int J Radiat Oncol Biol Phys. 1996;36(3):549–56.

    Article  CAS  PubMed  Google Scholar 

  82. Kiebert GM, Curran D, Aaronson NK, Bolla M. Quality of life after radiation therapy of cerebral low-grade gliomas of the adult: results of a randomised phase III trial on dose response (EORTC trial 22844). EORTC Radiotherapy Co-operative Group. Eur J Cancer. 1998;34(12):1902–9.

    Article  CAS  PubMed  Google Scholar 

  83. Nahed BV, Redjal N, Brat DJ, Chi AS. Management of patients with recurrence of diffuse low grade glioma: a systematic review and evidence-based clinical practice guideline. J Neurooncol. 2015;125:609–30. https://doi.org/10.1007/s11060-015-1910-2.

    Article  CAS  PubMed  Google Scholar 

  84. Krauze AV, Attia A, Braunstein S, Chan M, Combs SE, Fietkau R, Fiveash J, Flickinger J, Grosu A, Howard S, Nieder C, Niyazi M, Rowe L, Smart DD, Tsien C, Camphausen K. Expert consensus on re-irradiation for recurrent glioma. Radiat Oncol. 2017;12:194. https://doi.org/10.1186/s13014-017-0928-3.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Nieder C, Andratschke NH, Grosu AL. Re-irradiation for recurrent primary brain tumors. Anticancer Res. 2016;36:4985–95.

    Article  CAS  PubMed  Google Scholar 

  86. Shaw E, Arusell R, Scheithauer B, O’Fallon J. Prospective randomized trial of low- versus high-dose radiation therapy in adults with supratentorial lowgrade glioma: initial report of a North Central Cancer Treatment Group/Radiation Therapy Oncology Group/Eastern Cooperative Oncology Group study. J Clin Oncol. 2002;20(9):2267–76.

    Article  CAS  PubMed  Google Scholar 

  87. Teoh M, Clark CH, Wood K, Whitaker S, Nisbet A. Volumetric modulated arc therapy: a review of current literature and clinical use in practice. Br J Radiol. 2011;2011(84):967–96.

    Article  Google Scholar 

  88. Shaffer R, Nichol AM, Vollans E, et al. A comparison of volumetric modulated arc therapy and conventional intensity-modulated radiotherapy for frontal and temporal high-grade gliomas. Int J Radiat Oncol Biol Phys. 2010;76:1177–84.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flores-Castro, M., Sebastian-Barajas, G. (2021). Radiotherapy in Brain Tumors. In: Monroy-Sosa, A., Chakravarthi, S.S., de la Garza-Salazar, J.G., Meneses Garcia, A., Kassam, A.B. (eds) Principles of Neuro-Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-54879-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54879-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54878-0

  • Online ISBN: 978-3-030-54879-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics