Skip to main content

Integration of White Matter Tractography in Subcortical and Skull Base Neurosurgical Planning

  • Chapter
  • First Online:
Principles of Neuro-Oncology

Abstract

The incorporation of DTI and 3D tractography into the surgical planning workflow has increased awareness of the impact of resection of subcortical pathology as well as extra-axial anterior skull base lesions on the neural network. The 3D perspective that tractography affords in understanding neural anatomy, preoperative planning, and intraoperative navigation has provided unprecedented focus on neural network (both white matter tract and cranial nerve) preservation. The 3D-rendered neural network fused with CTA, structural MRI, and fMRI has prompted reanalysis of both subcortical and skull base surgical algorithms and refinement of conventional surgical approaches. Increased conspicuity of the neural network and integration of tractography in subcortical and skull base surgery aids in corridor choice, intraoperative navigation, and resection with the goal of minimizing the surgical footprint and maximizing patients’ quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  1. Kassam AB, Engh JA, Mintz AH, Prevedello DM. Completely endoscopic resection of intraparenchymal brain tumors. J Neurosurg. 2009;110(1):116–23. https://doi.org/10.3171/2008.7.JNS08226.

    Article  PubMed  Google Scholar 

  2. Ding D, Przybylowski CJ, Starke RM, et al. A minimally invasive anterior skull base approach for evacuation of a basal ganglia hemorrhage. J Clin Neurosci. 2015;22(11):1816–9. https://doi.org/10.1016/j.jocn.2015.03.052.

    Article  PubMed  Google Scholar 

  3. Przybylowski CJ, Ding D, Starke RM, Webster Crowley R, Liu KC. Endoport-assisted surgery for the management of spontaneous intracerebral hemorrhage. J Clin Neurosci Off J Neurosurg Soc Australas. 2015;22(11):1727–32. https://doi.org/10.1016/j.jocn.2015.05.015.

    Article  Google Scholar 

  4. Labib MA, Shah M, Kassam AB, et al. The safety and feasibility of image-guided BrainPath-mediated transsulcul hematoma evacuation: a multicenter study. Neurosurgery. 2016;1 https://doi.org/10.1227/NEU.0000000000001316.

  5. Ding D, Starke RM, Webster Crowley R, Liu KC. Endoport-assisted microsurgical resection of cerebral cavernous malformations. J Clin Neurosci. 2015;22(6):1025–9. https://doi.org/10.1016/j.jocn.2015.01.004.

    Article  PubMed  Google Scholar 

  6. Scranton RA, Fung SH, Britz GW. Transulcal parafascicular minimally invasive approach to deep and subcortical cavernomas: technical note. J Neurosurg. 2016:1–7. https://doi.org/10.3171/2015.12.JNS152185.

  7. Amenta PS, Dumont AS, Medel R. Resection of a left posterolateral thalamic cavernoma with the Nico BrainPath sheath: Case report, technical note, and review of the literature. Interdiscip Neurosurg. 2016;5:12–7. https://doi.org/10.1016/j.inat.2016.03.006.

    Article  Google Scholar 

  8. Sun G, Chen X, Zhao Y, et al. Intraoperative high-field magnetic resonance imaging combined with fiber tract neuronavigation-guided resection of cerebral lesions involving optic radiation. Neurosurgery. 2011;69(5):1070–84.; discussion 1084. https://doi.org/10.1227/NEU.0b013e3182274841.

    Article  PubMed  Google Scholar 

  9. Cho JM, Kim EH, Kim J, et al. Clinical use of diffusion tensor image-merged functional neuronavigation for brain tumor surgeries: review of preoperative, intraoperative, and postoperative data for 123 cases. Yonsei Med J. 2014;55(5):1303–9. https://doi.org/10.3349/ymj.2014.55.5.1303.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schulte T, Müller-Oehring EM. Contribution of callosal connections to the interhemispheric integration of visuomotor and cognitive processes. Neuropsychol Rev. 2010;20(2):174–90. https://doi.org/10.1007/s11065-010-9130-1.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hofer S, Frahm J. Topography of the human corpus callosum revisited--comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage. 2006;32(3):989–94. https://doi.org/10.1016/j.neuroimage.2006.05.044.

    Article  PubMed  Google Scholar 

  12. Berlucchi G. Frontal callosal disconnection syndromes. Cortex J Devoted Study Nerv Syst Behav. 2012;48(1):36–45. https://doi.org/10.1016/j.cortex.2011.04.008.

    Article  Google Scholar 

  13. Fernandez-Miranda JC, Pathak S, Engh J, et al. High-definition fiber tractography of the human brain: neuroanatomical validation and neurosurgical applications. Neurosurgery. 2012;71(2):430–53. https://doi.org/10.1227/NEU.0b013e3182592faa.

    Article  PubMed  Google Scholar 

  14. van den Heuvel M, Mandl R, Luigjes J, Hulshoff PH. Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J Neurosci. 2008;28(43):10844–51. https://doi.org/10.1523/JNEUROSCI.2964-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McDonald CR, Ahmadi ME, Hagler DJ, et al. Diffusion tensor imaging correlates of memory and language impairments in temporal lobe epilepsy. Neurology. 2008;71(23):1869–76. https://doi.org/10.1212/01.wnl.0000327824.05348.3b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Delano-Wood L, Stricker NH, Sorg SF, et al. Posterior cingulum white matter disruption and its associations with verbal memory and stroke risk in mild cognitive impairment. J Alzheimers Dis. 2012;29(3):589–603.

    Article  Google Scholar 

  17. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(2):676–82. https://doi.org/10.1073/pnas.98.2.676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Castellanos FX, Margulies DS, Kelly AMC, et al. Cingulate - precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiatry. 2008;63(3):332–7. https://doi.org/10.1016/j.biopsych.2007.06.025.

    Article  PubMed  Google Scholar 

  19. Dennis EL, Thompson PM. Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychol Rev. 2014;24(1):49–62. https://doi.org/10.1007/s11065-014-9249-6.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gusnard DA, Akbudak E, Shulman GL, Raichle ME. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(7):4259–64. https://doi.org/10.1073/pnas.071043098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Buckner RL, Snyder AZ, Shannon BJ, et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci Off J Soc Neurosci. 2005;25(34):7709–17. https://doi.org/10.1523/JNEUROSCI.2177-05.2005.

    Article  CAS  Google Scholar 

  22. Raslau FD, Augustinack JC, Klein AP, Ulmer JL, Mathews VP, Mark LP. Memory Part 3: The role of the fornix and clinical cases. Am J Neuroradiol. 2015;36(9):1604–8. https://doi.org/10.3174/ajnr.A4371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kamali A, Flanders AE, Brody J, Hunter JV, Hasan KM. tracing superior longitudinal fasciculus connectivity in the human brain using high resolution diffusion tensor tractography. Brain Struct Funct. 2014;219(1) https://doi.org/10.1007/s00429-012-0498-y.

  24. Maheshwari M, Klein A, Ulmer J. White Matter: functional anatomy of key tracts. In: functional neuroradiology principles and clinical applications. Boston, MA: Springer Science+Business Media, LLC; 2012:767–783.

    Google Scholar 

  25. Nakajima R, Kinoshita M, Miyashita K, et al. Damage of the right dorsal superior longitudinal fascicle by awake surgery for glioma causes persistent visuospatial dysfunction. Sci Rep. 2017;7 https://doi.org/10.1038/s41598-017-17461-4.

  26. Caverzasi E, Hervey-Jumper SL, Jordan KM, et al. Identifying preoperative language tracts and predicting postoperative functional recovery using HARDI q-ball fiber tractography in patients with gliomas. J Neurosurg. 2016;125(1):33–45. https://doi.org/10.3171/2015.6.JNS142203.

    Article  PubMed  Google Scholar 

  27. Shinoura N, Midorikawa A, Onodera T, et al. Damage to the left ventral, arcuate fasciculus and superior longitudinal fasciculus-related pathways induces deficits in object naming, phonological language function and writing, respectively. Int J Neurosci. 2013;123(7):494–502. https://doi.org/10.3109/00207454.2013.765420.

    Article  PubMed  Google Scholar 

  28. Dick AS, Tremblay P. Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain. 2012;135(12):3529–50. https://doi.org/10.1093/brain/aws222.

    Article  PubMed  Google Scholar 

  29. Davtian M, Ulmer JL, Mueller WM, Gaggl W, Mulane MP, Krouwer HG. The superior longitudinal fasciculus and speech arrest. J Comput Assist Tomogr. 2008;32(3):410–4.

    Article  Google Scholar 

  30. Herbet G, Moritz-Gasser S, Duffau H. Direct evidence for the contributive role of the right inferior fronto-occipital fasciculus in non-verbal semantic cognition. Brain Struct Funct. 2017;222(4):1597–610. https://doi.org/10.1007/s00429-016-1294-x.

    Article  PubMed  Google Scholar 

  31. Saur D, Kreher BW, Schnell S, et al. Ventral and dorsal pathways for language. Proc Natl Acad Sci U S A. 2008;105(46):18035–40. https://doi.org/10.1073/pnas.0805234105.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sarubbo S, Benedictis AD, Milani P, et al. The course and the anatomo-functional relationships of the optic radiation: a combined study with ‘post mortem’ dissections and ‘in vivo’ direct electrical mapping. J Anat. 2015;226(1):47. https://doi.org/10.1111/joa.12254.

    Article  PubMed  Google Scholar 

  33. Kier EL, Staib LH, Davis LM, Bronen RA. MR imaging of the temporal stem: anatomic dissection tractography of the uncinate fasciculus, inferior occipitofrontal fasciculus, and Meyer’s loop of the optic radiation. Am J Neuroradiol. 2004;25(5):677–91.

    PubMed  PubMed Central  Google Scholar 

  34. Oishi K, Faria AV, Hsu J, Tippett D, Mori S, Hillis AE. Critical role of the right uncinate fasciculus in emotional empathy. Ann Neurol. 2015;77(1):68–74. https://doi.org/10.1002/ana.24300.

    Article  PubMed  Google Scholar 

  35. Lemaitre A-L, Lafargue G, Duffau H, Herbet G. Damage to the left uncinate fasciculus is associated with heightened schizotypal traits: a multimodal lesion-mapping study. Schizophr Res. 2018;197:240–8. https://doi.org/10.1016/j.schres.2018.02.027.

    Article  PubMed  Google Scholar 

  36. Kamali A, Sair HI, Radmanesh A, Hasan KM. Decoding the superior parietal lobule connections of the superior longitudinal fasciculus/arcuate fasciculus in the human brain. Neuroscience. 2014;277:577–83. https://doi.org/10.1016/j.neuroscience.2014.07.035.

    Article  CAS  PubMed  Google Scholar 

  37. Monroy-Sosa A, Jennings J, Chakravarthi S, et al. Microsurgical anatomy of the vertical rami of the superior longitudinal fasciculus: an intraparietal sulcus dissection study. Oper Neurosurg Hagerstown Md. 2018; https://doi.org/10.1093/ons/opy077.

  38. Duffau H. The dangers of magnetic resonance imaging diffusion tensor tractography in brain surgery. World Neurosurg. 2014;81(1):56–8.

    Article  Google Scholar 

  39. Duffau H. Diffusion tensor imaging is a research and educational tool, but not yet a clinical tool. World Neurosurg. 82:e43–5.

    Google Scholar 

  40. Potgieser A, Wagemakers M, van Hulzen A, de Jong B, Hoving E, Groen R. The role of diffusion tensor imaging in brain tumor surgery: a review of the literature. Clin Neurol Neurosurg. 2014;124:51–8.

    Article  Google Scholar 

  41. Essayed WI, Zhang F, Unadkat P, Cosgrove GR, Golby AJ, O’Donnell LJ. White matter tractography for neurosurgical planning: a topography-based review of the current state of the art. NeuroImage Clin. 2017;15:659–72. https://doi.org/10.1016/j.nicl.2017.06.011.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kelly PJ, Goerss SJ, Kall BA. The stereotaxic retractor in computer-assisted stereotaxic microsurgery. Technical note. J Neurosurg. 1988;69(2):301–6. https://doi.org/10.3171/jns.1988.69.2.0301.

    Article  CAS  PubMed  Google Scholar 

  43. Monroy-Sosa A, Chakravarthi SS, Fukui MB, Kura B, Jennings JE, Celix JM, Nash KC, Kassam M, Rovin RA, Kassam AB. White Matter-Governed Superior Frontal Sulcus Surgical Paradigm: A Radioanatomic Microsurgical Study-Part I. Oper Neurosurg (Hagerstown). Published online May 9, 2020. https://doi.org/10.1093/ons/opaa065

  44. Kassam AB, Monroy-Sosa A, Fukui MB, Kura B, Jennings JE, Celix JM, Nash KC, Kassam M, Rovin RA, Chakravarthi SS. White Matter Governed Superior Frontal Sulcus Surgical Paradigm: A Radioanatomic Microsurgical Study-Part II. Oper Neurosurg (Hagerstown). Published online May 11, 2020. https://doi.org/10.1093/ons/opaa066

  45. Chakravarthi SS, Kassam AB, Fukui MB, et al. Awake surgical management of third ventricular tumors: a preliminary safety, feasibility, and clinical applications study. Oper Neurosurg Hagerstown Md. 2019; https://doi.org/10.1093/ons/opy405.

  46. Liouta E, Koutsarnakis C, Liakos F, Stranjalis G. Effects of intracranial meningioma location, size, and surgery on neurocognitive functions: a 3-year prospective study. J Neurosurg. 2016;124(6):1578–84. https://doi.org/10.3171/2015.6.JNS1549.

    Article  PubMed  Google Scholar 

  47. Abel TJ, Manzel K, Bruss J, Belfi AM, Howard MA, Tranel D. The cognitive and behavioral effects of meningioma lesions involving the ventromedial prefrontal cortex. J Neurosurg. 2016;124(6):1568–77. https://doi.org/10.3171/2015.5.JNS142788.

    Article  PubMed  Google Scholar 

  48. Nowrangi MA, Okonkwo O, Lyketsos C, Oishi K, Mori S, Albert M, Mielke MM. Atlas-based diffusion tensor imaging correlates of executive function. J Alzheimers Dis. 2015;44(2):585–98. https://doi.org/10.3233/JAD-141937.

  49. Chakravarthi SS, Fukui MB, Monroy-Sosa A, Gonen L, Epping A, Jennings JE, Mena LP de SR, Khalili S, Singh M, Celix JM, Kura B, Kojis N, Rovin RA, Kassam AB. The Role of 3D tractography in Skull Base Surgery: Technological Advances, Feasibility, and Early Clinical Assessment with Anterior Skull Base Meningiomas. J Neurol Surg B Skull Base. Published online August 14, 2020. https://doi.org/10.1055/s-0040-1713775

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fukui, M.B. et al. (2021). Integration of White Matter Tractography in Subcortical and Skull Base Neurosurgical Planning. In: Monroy-Sosa, A., Chakravarthi, S.S., de la Garza-Salazar, J.G., Meneses Garcia, A., Kassam, A.B. (eds) Principles of Neuro-Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-54879-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54879-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54878-0

  • Online ISBN: 978-3-030-54879-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics