Skip to main content

Part of the book series: Food Microbiology and Food Safety ((PRACT))

Abstract

The growth of spoilage microorganisms is determinative of end of shelf life of perishable products. Both intrinsic properties of foods and extrinsic factors of storage temperature and atmosphere influence the rate of microbial growth as well as the types of microorganisms that have selective advantage. Typical bacteria of concern include psychrotrophic bacteria, yeasts and molds, and lactic acid bacteria. These microorganisms are routinely measured by standard plate counting techniques in order to assess product performance and shelf-life duration. Growth rates of microorganisms vary throughout the refrigerated temperature and abusive temperature ranges, and therefore, selective advantages can be shifted by temperature changes during product distribution and storage. Experimental measurement or mathematical predictions of growth of microorganisms in foods can lead to accurate shelf-life estimation. Plate counts do not always equate to product spoilage, as some microorganism do not alter the organoleptic properties of certain products despite reaching 106 CFU/g and stationary phase. Chemical byproducts of microbial metabolism are indicators of products spoilage. Quantification of D-lactate and measurements of pH reduction can indicate activity of acid-producing microorganism, while diacetyl and acetoin production can indicate that bacteria have decomposed fats or proteins effectively ending the usable shelf life. Microbial growth and metabolism can sometimes lead to formation of biogenic amines such as histamine, putrescine, and cadaverine, which have safety as well as quality implications. Other organisms produce trimethylamine oxidase (TMAO), which can adversely impact gut health upon consumption. Storage temperature is the greatest predictor of shelf life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amodio, M.L., A. Derossi, L. Mastrandrea, G.B. Martínez Hernández, and G. Colelli. 2015. The use of multivariate analysis as a method for obtaining a more reliable shelf-life estimation of fresh-cut produce: A study on pineapple. In III international conference on fresh-cut produce: Maintaining quality and safety. Acta Horticulturae 1141: 131–136.

    Google Scholar 

  • Ayres, J.C., J.O. Mundt, and W.E. Sandine. 1980. Microbiology of Foods, Chp 16—Dairy Products. San Francisco: W.H. Freeman and Company.

    Google Scholar 

  • Baranyi, J., and T.A. Roberts. 1994. A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology 23 (3–4): 277–294.

    CAS  PubMed  Google Scholar 

  • Boziaris, I.S., A.P. Stamatiou, and G.J.E. Nychas. 2013. Microbiological aspects and shelf life of processed seafood products. Journal of the Science of Food and Agriculture 93 (5): 1184–1190.

    CAS  PubMed  Google Scholar 

  • Brackett, R.E. 1987. Microbiological consequences of minimally processed fruits and vegetables. Journal of Food Quality 10 (3): 195–206.

    Google Scholar 

  • Brooks, F.T. and C.G. Hansford. 1923. Mould growths upon cold-store meat. Transactions of the British Mycological Society 8(3): 113–142.

    Google Scholar 

  • Canadian Food Inspection Agency. 1999. Sampling and testing procedures. In In Meat Hygiene Manual, edited by Meat and Animal Product Division, 18. Canada: Government of Canada.

    Google Scholar 

  • Chandler, R.E., and T.A. McMeekin. 1989. Temperature function integration as the basis of an accelerated method to predict the shelf life of pasteurized, homogenized milk. Food Microbiology 6 (2): 105–111.

    Google Scholar 

  • Condurso, C., A. Verzera, V. Romeo, M. Ziino, and F. Conte. 2008. Solid-phase microextraction and gas chromatography mass spectrometry analysis of dairy product volatiles for the determination of shelf-life. International Dairy Journal 18 (8): 819–825.

    CAS  Google Scholar 

  • Corradini, M.G., and M. Peleg. 2007. Shelf-life estimation from accelerated storage data. Trends in Food Science & Technology 18: 37–47.

    CAS  Google Scholar 

  • D’Aoust, J.Y., 1991. Psychrotrophy and foodborne Salmonella. International Journal of Food Microbiology 13(3): 207–215.

    Google Scholar 

  • Dabadé, D.S., H.M. den Besten, P. Azokpota, M.R. Nout, D.J. Hounhouigan, and M.H. Zwietering. 2015. Spoilage evaluation, shelf-life prediction, and potential spoilage organisms of tropical brackish water shrimp (Penaeus notialis) at different storage temperatures. Food Microbiology 48: 8–16.

    PubMed  Google Scholar 

  • Dalgaard, P., L. Gram, and H.H. Huss. 1993. Spoilage and shelf-life of cod fillets packed in vacuum or modified atmospheres. International Journal of Food Microbiology 19 (4): 283–294.

    CAS  PubMed  Google Scholar 

  • De Vuyst, L., and B. Degeest. 1999. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiology Reviews 23 (2): 153–177.

    PubMed  Google Scholar 

  • Derossi, A., L. Mastrandrea, M.L. Amodio, M.L.V. de Chiara, and G. Colelli. 2016. Application of multivariate accelerated test for the shelf life estimation of fresh-cut lettuce. Journal of Food Engineering 169: 122–130.

    Google Scholar 

  • Domsch, K.H., Gams, W. and Anderson, T.H. 1980. Compendium of soil fungi. Volume 1. Academic Press (London) Ltd.

    Google Scholar 

  • Duncan, D. W., Jr. , and J. T. R. Nickerson. 1961. Effect or environmental and physiological conditions on the exponential phase growth of Pseudomonas fragi (ATCC 4973). In Proc. Low Temp. Microbiol. Symp., p. 253-262. Campbell Soup Co., Camden , N.J. Panasenko, V.T., 1967. Ecology of microfungi. The Botanical Review 33(3): 189–215.

    Google Scholar 

  • El-Gendy, S.M., H. Abdel-Galil, Y. Shahin, and F.Z. Hegazi. 1983. Acetoin and diacetyl production by homo-and heterofermentative lactic acid bacteria. Journal of Food Protection 46 (5): 420–425.

    CAS  PubMed  Google Scholar 

  • Eneroth, Å., S. Ahrné, and G. Molin. 2000. Contamination routes of Gram-negative spoilage bacteria in the production of pasteurised milk, evaluated by randomly amplified polymorphic DNA (RAPD). International Dairy Journal 10 (5–6): 325–331.

    CAS  Google Scholar 

  • Farber, J.M. 1991. Microbiological aspects of modified-atmosphere packaging technology—A review. Journal of Food Protection 54: 58–70.

    CAS  PubMed  Google Scholar 

  • Gougouli, M., and K.P. Koutsoumanis. 2010. Modelling growth of Penicillium expansum and Aspergillus niger at constant and fluctuating temperature conditions. International Journal of Food Microbiology 140 (2–3): 254–262.

    PubMed  Google Scholar 

  • Gram, L., L. Ravn, M. Rasch, J.B. Bruhn, A.B. Christensen, and M. Givskov. 2002. Food spoilage—Interactions between food spoilage bacteria. International Journal of Food Microbiology 78 (1–2): 79–97.

    PubMed  Google Scholar 

  • Griffiths, M.W., J.D. Phillips, and D.D. Muir. 1984. Methods for rapid detection of post-pasteurization contamination in cream. International Journal of Dairy Technology 37 (1): 22–26.

    Google Scholar 

  • Guthertz, Linda S., John T. Fruin, Delano Spicer, and James L. Fowler. 1976. Microbiology of fresh comminuted Turkey meat. Journal of Milk and Food Technology 39 (12): 823–829.

    Google Scholar 

  • Guy, R.A., A. Kapoor, J. Holicka, D. Shepherd, and P.A. Horgen. 2006. A rapid molecular-based assay for direct quantification of viable bacteria in slaughterhouses. Journal of Food Protection 69 (6): 1265–1272.

    CAS  PubMed  Google Scholar 

  • Henyon, D.K. 1999. Extended shelf-life milks in North America: A perspective. International Journal of Dairy Technology 52 (3): 95–101.

    Google Scholar 

  • Holley, R.A. 1999. Brochothrix. In Encyclopedia of food microbiology, ed. R.K. Robinson, C.A. Batt, and P. Patel, 314–318. New York: Academic.

    Google Scholar 

  • Holley, R.A., M.D. Peirson, J. Lam, and K.B. Tan. 2004. Microbial profiles of commercial, vacuum-packaged, fresh pork of normal or short storage life. International Journal of Food Microbiology 97 (1): 53–62.

    PubMed  Google Scholar 

  • Hug, D.H., and J.K. Hunter. 1974. Effect of temperature on histidine ammonia-lyase from a psychrophile, Pseudomonas putida. Journal of Bacteriology 119 (1): 92–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  • in’t Veld, J.H.H. 1996. Microbial and biochemical spoilage of foods: An overview. International Journal of Food Microbiology 33 (1): 1–18.

    Google Scholar 

  • Ingram, M., and R.H. Dainty. 1971. Changes caused by microbes in spoilage of meats. Journal of Applied Bacteriology 34 (1): 21–39.

    CAS  Google Scholar 

  • International Commission on Microbiological Specifications for Foods. 1986. Microorganisms in foods 2. Sampling for microbiological analysis: Principles and specific applications. 2nd ed. Toronto: University of Toronto Press.

    Google Scholar 

  • ———. 1996. Microorganisms in Foods 5: Characteristics of Microbial Pathogens. Chapman & Hall: Blackie Academic & Professional.

    Google Scholar 

  • ———. 2011. Microorganisms in Foods: 8. https://doi.org/10.1007/978-1-4419-9374-8.

  • Ioannidis, A.G., F.M. Kerckhof, Y.R. Drif, M. Vanderroost, N. Boon, P. Ragaert, B. De Meulenaer, and F. Devlieghere. 2018. Characterization of spoilage markers in modified atmosphere packaged iceberg lettuce. International Journal of Food Microbiology 279: 1–13.

    CAS  PubMed  Google Scholar 

  • Jacxsens, L., F. Devlieghere, and J. Debevere. 2002. Temperature dependence of shelf-life as affected by microbial proliferation and sensory quality of equilibrium modified atmosphere packaged fresh produce. Postharvest Biology and Technology 26 (1): 59–73.

    CAS  Google Scholar 

  • Janssen, M.M.T., H.M.C. Put, and M.J.R. Nout. 1996. Natural toxins. In Food Safety and Toxicity, ed. J. de Vries, 7–37. Open University of the Netherlands: Publication Robert B. Stern.

    Google Scholar 

  • Karpíšková, R., M. Dušková, and J. Kameník. 2013. Weissella viridescens in meat products—a review. Acta Veterinaria Brno [serial online]. 82 (3): 237–241.

    Google Scholar 

  • King, A.D., and H.R. Bolin. 1989. Physiological and microbiological storage stability of minimally processed fruits and vegetables. Food Technology 43 (2): 132–135.

    Google Scholar 

  • Korkeala, H.J., P.M. Makela, and H.L. Suominen. 1990. Growth temperatures of ropy slime-producing lactic acid bacteria. Journal of Food Protection 53 (9): 793–794.

    PubMed  Google Scholar 

  • Koutsoumanis, K. 2001. Predictive modeling of the shelf life of fish under nonisothermal conditions. Applied and Environmental Microbiology 67 (4): 1821–1829. https://doi.org/10.1128/AEM.67.4.1821-1829.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft, A. 1992. Psychrotrophic Bacteria in Foods: Disease and Spoilage. Boca Raton, FL: CRC Press Inc.

    Google Scholar 

  • Labuza, T.P. 1984. Application of chemical kinetics to deterioration of foods. Journal of Chemical Education 61: 348.

    CAS  Google Scholar 

  • Leroi, F., P.A. Fall, M.F. Pilet, F. Chevalier, and R. Baron. 2012. Influence of temperature, pH and NaCl concentration on the maximal growth rate of Brochothrix thermosphacta and a bioprotective bacteria Lactococcus piscium CNCM I-4031. Food Microbiology 31: 222–228.

    CAS  PubMed  Google Scholar 

  • Lin, M., M. Al-Holy, M. Mousavi-Hesary, H. Al-Qadiri, A.G. Cavinato, and B.A. Rasco. 2004. Rapid and quantitative detection of the microbial spoilage in chicken meat by diffuse reflectance spectroscopy (600–1100 nm). Letters in Applied Microbiology 39 (2): 148–155.

    CAS  PubMed  Google Scholar 

  • Longhi, D.A., A. Tremarin, B.A.M. Carciofi, J.B. Laurindo, and G.M.F. de Aragão. 2014. Modeling the growth of Byssochlamys fulva on solidified apple juice at different temperatures. Brazilian Archives of Biology and Technology 57 (6): 971–978.

    Google Scholar 

  • Longhi, D.A., W.F. Martins, N.B. da Silva, B.A.M. Carciofi, G.M.F. de Aragão, and J.B. Laurindo. 2016. Estimation of the temperature dependent growth parameters of Lactobacillus viridescens in culture medium with two-step modelling and optimal experimental design approaches. Procedia Food Science 7: 25–28.

    Google Scholar 

  • Lund, B.M., T.C. Baird-Parker, and G.W. Gould. 2000. The Microbiological Safety and Quality of Food. Vol. 1. Gaithersburg, MD: Aspen Publishers, Inc.

    Google Scholar 

  • Lyhs, U., J.M. Koort, H.S. Lundström, and K.J. Björkroth. 2004. Leuconostoc gelidum and Leuconostoc gasicomitatum strains dominated the lactic acid bacterium population associated with strong slime formation in an acetic-acid herring preserve. International Journal of Food Microbiology 90 (2): 207–218.

    CAS  PubMed  Google Scholar 

  • Mackelprang, R., A. Burkert, M. Haw, T. Mahendrarajah, C.H. Conaway, T.A. Douglas, and M.P. Waldrop. 2017. Microbial survival strategies in ancient permafrost: Insights from metagenomics. The ISME Journal 11 (10): 2305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Man, D. 2002. Shelf Life. London: Blackwell Science Ltd.

    Google Scholar 

  • Mano, S.B., G.D. Garcia de Fernando, D. Lopez-Galvez, M.D. Selgas, M.L. Garcia, M.I. Cambero, and J.A. Ordonez. 1995. Growth/survival of natural flora and Listeria monocytogenes on refrigerated uncooked pork and Turkey packaged under modified atmospheres. Journal of Food Safety 15: 305–319.

    Google Scholar 

  • Martínez, N., M.C. Martín, A. Herrero, M. Fernández, M.A. Alvarez, and V. Ladero. 2011. qPCR as a powerful tool for microbial food spoilage quantification: Significance for food quality. Trends in Food Science & Technology 22 (7): 367–376.

    Google Scholar 

  • Mataragas, M., V. Dimitriou, P.N. Skandamis, and E.H. Drosinos. 2011. Quantifying the spoilage and shelf-life of yoghurt with fruits. Food Microbiology 28 (3): 611–616.

    CAS  PubMed  Google Scholar 

  • Mikš-Krajnik, M., Y.J. Yoon, D.O. Ukuku, and H.G. Yuk. 2016. Volatile chemical spoilage indexes of raw Atlantic salmon (Salmo salar) stored under aerobic condition in relation to microbiological and sensory shelf lives. Food Microbiology 53: 182–191.

    PubMed  Google Scholar 

  • Mizrahi, S. 2004. Accelerated shelf life tests. In Understanding and Measuring the Shelf-Life Of Food, ed. R. Steele. Cambridge, UK: Woodhead Publishing.

    Google Scholar 

  • Mislivec, P.B. and Tuite, J., 1970. Temperature and relative humidity requirements of species of Penicillium isolated from yellow dent corn kernels. Mycologia 62(1): 75–88.

    Google Scholar 

  • Mossel, D.A.A., and M. Ingram. 1955. The physiology of the microbial spoilage of foods. Journal of Applied Bacteriology 18 (2): 232–268.

    CAS  Google Scholar 

  • Nieminen, T.T., P. Dalgaard, and J. Björkroth. 2016. Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork. International Journal of Food Microbiology 218: 86–95.

    CAS  PubMed  Google Scholar 

  • O’Brien, J.K., and Robert T. Marshall. 1996. Microbiological quality of raw ground chicken processed at high isostatic pressure. Journal of Food Protection 59 (2): 146–150.

    PubMed  Google Scholar 

  • O’Connor-Shaw, R.E., R. Roberts, A.L. Ford, and S.M. Nottingham. 1994. Shelf life of minimally processed honeydew, kiwifruit, papaya, pineapple and cantaloupe. Journal of Food Science 59 (6): 1202–1206.

    Google Scholar 

  • Pablo, B.D., M.A. Asensio, B. Sanz, and J.A. Ordonez. 1989. The D (−) lactic acid and acetoin/diacetyl as potential indicators of the microbial quality of vacuum-packed pork and meat products. Journal of Applied Bacteriology 66 (3): 185–190.

    Google Scholar 

  • Panagou, E.Z., P.N. Skandamis, and G.-J.E. Nychas. 2003. Modelling the combined effect of temperature, pH and aw on the growth rate of Monascus ruber, a heat-resistant fungus isolated from green table olives. Journal of Applied Microbiology 94 (1): 146–156.

    CAS  PubMed  Google Scholar 

  • Panagou, E.Z., S. Chelonas, I. Chatzipavlidis, and G.-J.E. Nychas. 2010. Modelling the effect of temperature and water activity on the growth rate and growth/no growth interface of Byssochlamys fulva and Byssochlamys nivea. Food Microbiology 27 (5): 618–627.

    PubMed  Google Scholar 

  • Park, J.-M., J.-H. Koh, and J.-M. Kim. 2018. Predicting Shelf-life of Ice Cream by Accelerated Conditions. Korean Journal for Food Science of Animal Sesources 38 (6): 1216–1225.

    Google Scholar 

  • Peleg, M., M.D. Normand, and M.G. Corradini. 2012. The Arrhenius equation revisited. Critical Reviews in Food Science and Nutrition 52 (9): 830–851.

    CAS  PubMed  Google Scholar 

  • Pereira, J.A., L. Dionísio, L. Patarata, and T.J. Matos. 2019. Multivariate nature of a cooked blood sausage spoilage along aerobic and vacuum package storage. Food Packaging and Shelf Life 20: 100304.

    Google Scholar 

  • Pitt, J.I., and A.D. Hocking. 1997. Fungi and Food Spoilage. 2nd ed. Chapman & Hall: Blackie Academic & Professional.

    Google Scholar 

  • Pitt, John I., and Ailsa D. Hocking. 2009. Fungi and Food Spoilage. New York: Springer Science & Business Media.

    Google Scholar 

  • Pothakos, V., S. Samapundo, and F. Devlieghere. 2012. Total mesophilic counts underestimate in many cases the contamination levels of psychrotrophic lactic acid bacteria (LAB) in chilled-stored food products at the end of their shelf-life. Food Microbiology 32 (2): 437–443.

    PubMed  Google Scholar 

  • Pothakos, V., C. Snauwaert, P. De Vos, G. Huys, and F. Devlieghere. 2014. Psychrotrophic members of Leuconostoc gasicomitatum, Leuconostoc gelidum and Lactococcus piscium dominate at the end of shelf-life in packaged and chilled-stored food products in Belgium. Food Microbiology 39: 61–67.

    CAS  PubMed  Google Scholar 

  • Price, P.B., and T. Sowers. 2004. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proceedings of the National Academy of Sciences 101 (13): 4631–4636.

    CAS  Google Scholar 

  • Ricciardi, A., E. Parente, and T. Zotta. 2009. Modelling the growth of Weissella cibaria as a function of fermentation conditions. Journal of Applied Microbiology 107 (5): 1528–1535.

    CAS  PubMed  Google Scholar 

  • Riva, M., D. Fessas, and A. Schiraldi. 2001. Isothermal calorimetry approach to evaluate shelf life of foods. Thermochimica Acta 370 (1–2): 73–81.

    CAS  Google Scholar 

  • Ronsivalli, L.J., and S.E. Charm. 1975. Spoilage and shelf life prediction of refrigerated fish. Marine Fisheries Review 37 (4): 32–34.

    Google Scholar 

  • Rouf, M.A., and M.M. Rigney. 1971. Growth temperatures and temperature characteristics of Aeromonas. Applied Microbiology 22 (4): 503–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rysstad, G., and J. Kolstad. 2006. Extended shelf life milk—Advances in technology. International Journal of Dairy Technology 59 (2): 85–96.

    Google Scholar 

  • Samson, R.A., J. Houbraken, U. Thrane, J.C. Frisvad, and B. Andersen. 2010. Food and Indoor Fungi. Utrecht, The Netherlands: CBS-KNAW Fungal Biodiversity Centre.

    Google Scholar 

  • Saraiva, C., I. Oliveira, J.A. Silva, C. Martins, J. Ventanas, and C. García. 2015. Implementation of multivariate techniques for the selection of volatile compounds as indicators of sensory quality of raw beef. Journal of Food Science and Technology 52 (6): 3887–3898.

    CAS  PubMed  Google Scholar 

  • Sørheim, O., T. Aune, and T. Nesbakken. 1997. Technological, hygienic and toxicological aspects of carbon monoxide used in modified-atmosphere packaging of meat. Trends in Food Science & Technology 8 (9): 307–312.

    Google Scholar 

  • Sotelo, C.G., and H. Rehbein. 2000. TMAO-Degrading Enzymes. Food Science and Technology, 167–190. New York: Marcel Dekker.

    Google Scholar 

  • Spencer, R. and C. R. Baines. 1964. The effect or temperature on the spoilage of wet white fish. Food Technology 18:769–773.

    Google Scholar 

  • Stannard, C.J., A.P. Williams, and P.A. Gibbs. 1985. Temperature/growth relationships for psychrotrophic food-spoilage bacteria. Food Microbiology 2 (2): 115–122.

    Google Scholar 

  • Suman, S.P., R.A. Mancini, and C. Faustman. 2006. Lipid-oxidation-induced carboxymyoglobin oxidation. Journal of Agricultural and Food Chemistry 54 (24): 9248–9253.

    CAS  PubMed  Google Scholar 

  • Szabo, E.A., K.J. Scurrah, and J.M. Burrows. 2000. Survey for psychrotrophic bacterial pathogens in minimally processed lettuce. Letters in Applied Microbiology 30(6), 456–460.

    Google Scholar 

  • Taiti, C., C. Costa, P. Menesatti, S. Caparrotta, N. Bazihizina, E. Azzarello, W.A. Petrucci, E. Masi, and E. Giordani. 2015. Use of volatile organic compounds and physicochemical parameters for monitoring the post-harvest ripening of imported tropical fruits. European Food Research and Technology 241 (1): 91–102.

    CAS  Google Scholar 

  • Taormina, P.J. 2014. Meat and poultry: Curing of meat. Encyclopedia of Food Microbiology (Second Edition) 2: 501–507.

    Google Scholar 

  • Ternström, A., A.M. Lindberg, and G. Molin. 1993. Classification of the spoilage flora of raw and pasteurized bovine milk, with special reference to Pseudomonas and Bacillus. Journal of Applied Bacteriology 75 (1): 25–34.

    Google Scholar 

  • Tománková, J., J. Bořilová, I. Steinhauserová, and L. Gallas. 2012. Volatile organic compounds as biomarkers of the freshness of poultry meat packaged in a modified atmosphere. Czech Journal of Food Sciences 30 (5): 395–403.

    Google Scholar 

  • Vaikousi, H., C.G. Biliaderis, and K.P. Koutsoumanis. 2008. Development of a microbial time/temperature indicator prototype for monitoring the microbiological quality of chilled foods. Applied and Environmental Microbiology 74 (10): 3242–3250.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Zijl, M.M., and P.M. Klapwijk. 2000. Yellow fat products (butter, margarine, dairy and non-dairy spreads), Chp 29. In The Microbiological Safety and Quality of Food, ed. B.M. Lund, T.C. Baird-Parker, and G.W. Gould, vol. I. Gaithersburg, MD: Aspen.

    Google Scholar 

  • Viljoen, B.C., I. Geornaras, A. Lamprecht, and A. Von Holy. 1998. Yeast populations associated with processed poultry. Food Microbiology 15 (1): 113–117.

    Google Scholar 

  • Wijtzes, T., J.C. De Wit, J.H.J. in’t Veld, K. Van’t Reit, and M.H. Zwietering. 1995. Modelling bacterial growth of Lactobacillus curvatus as a function of acidity and temperature. Applied and Environmental Microbiology 61 (7): 2533–2539.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, P.D.G., T.F. Brocklehurst, S. Arino, D. Thuault, M. Jakobsen, M. Lange, J. Farkas, J.W.T. Wimpenny, and J.F. Van Impe. 2002. Modelling microbial growth in structured foods: Towards a unified approach. International Journal of Food Microbiology 73 (2–3): 275–289.

    CAS  PubMed  Google Scholar 

  • Xiao, Z., and J.R. Lu. 2014. Strategies for enhancing fermentative production of acetoin: A review. Biotechnology Advances 32 (2): 492–503.

    CAS  PubMed  Google Scholar 

  • Yamasato, K., D. Okuno, and T. Ohtomo. 1973. Preservation of bacteria by freezing at moderately low temperatures. Cryobiology 10: 453–463.

    CAS  PubMed  Google Scholar 

  • Zeppa, G., L. Conterno, and V. Gerbi. 2001. Determination of organic acids, sugars, diacetyl, and acetoin in cheese by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry 49 (6): 2722–2726.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., Y. Mao, K. Li, P. Dong, R. Liang, and X. Luo. 2011. Models of Pseudomonas growth kinetics and shelf life in chilled Longissimus dorsi muscles of beef. Asian-Australasian Journal of Animal Sciences 24 (5): 713–722. https://doi.org/10.5713/ajas.2011.10404.

    Article  Google Scholar 

  • Zwietering, M.H., J.C. De Wit, H.G.A.M. Cuppers, and K. Vann’t Reit. 1994. Modeling of bacterial growth with shifts in temperature. Applied and Environmental Microbiology 60 (1): 204–213.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Taormina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taormina, P.J. (2021). Microbial Growth and Spoilage. In: Taormina, P.J., Hardin, M.D. (eds) Food Safety and Quality-Based Shelf Life of Perishable Foods. Food Microbiology and Food Safety(). Springer, Cham. https://doi.org/10.1007/978-3-030-54375-4_3

Download citation

Publish with us

Policies and ethics