Skip to main content

Interaction of Harmonic Waves of Different Types with the Three-Layer Plate Placed in the Soil

  • Chapter
  • First Online:
Dynamics, Strength of Materials and Durability in Multiscale Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 137))

Abstract

The solution of two-dimensional task about interaction of harmonic wave with plate with finite length is placed in the soil. Plate’s mechanical behavior is described by Pimushin V.N. equations system, and soil mechanical behavior is described by linear propulsion theory equation. Research of vibration-absorbing properties of the plate dependent on frequency and form of harmonic wave acting on the plate was conducted. From practical point of view, this task is connected with protection of underground buildings from vibration impact, formed by moving trains of underground in different distances from object being protected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abali, B. E., Altenbach, H., dell’Isola, F., Eremeyev, V. A., & Ochsner, A. (Eds). (2019). New achievements in continuum mechanics and thermodynamics. In A tribute to wolfgang H. muller. Advanced structured materials (Vol. 108, 564p). Cham. Switzerland.: Springer Nature Switzerland AG. Part of Springer.

    Google Scholar 

  • Abali, B. E., Muller, W., & dell’Isola, F. (2017). Theory and computation of higher gradient elasticity theories based on action principles. Archive of Applied Mechanics, 87(9).

    Google Scholar 

  • Alibert, J. J., Seppecher, P., dell’Isola, F. (2003). Truss modular beams with deformation energy de-pending on higher displacement gradients. Mathematics and Mechanics of Solids, 8(1).

    Google Scholar 

  • Andreaus, U., dell’Isola, F., & Porfiri, M. (2004). Piezoelectric passive distributed controllers for beam flexural vibrations. Journal of Vibration and Control, 10(5), 625–659.

    Article  Google Scholar 

  • Auffray, N., dell’Isola, F., Eremeyev, V., Madeo, A., & Rossi, G. (2013). Analytical continuum mechanics à la Hamilton-Piola: Least action principle for second gradient continua and capillary fluids. Mathematics and Mechanics of Solids.

    Google Scholar 

  • Barchiesi, E., Spagnuolo, M., & Placidi, L. (2019). Mechanical metamaterials: A state of the art. Mathematics and Mechanics of Solids, 24(1), 212–234.

    Article  MathSciNet  Google Scholar 

  • Berezhnoi, D. V., Konoplev, Yu. G., Paimushin, V. N., & Sekaeva, L. R. (2004). Investigation of the interaction between concrete collector and dry and waterlogged grounds. Trudy Vseros. nauch. konf. “Matematicheskoe modelirovanie i kraevye zadachi” [Proc. All-Russ. Sci. Conf. “Mathematical Simulation and Boundary Value Problems”]. Part 1. Mathematical Models of Mechanics, Strength and Reliability of Structures. Samara, SamGTU, pp. 37–39. (In Russian).

    Google Scholar 

  • Del Vescovo, D., & Giorgio, I. (2014). Dynamic problems for metamaterials: review of existing models and ideas for further research. International Journal of Engineering Science, 80, 153–172.

    Article  MathSciNet  Google Scholar 

  • dell’Isola, F., Andreaus, U., & Placidi, L. (2015). At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topi-cal contribution of Gabrio Piola. Mathematics and Mechanics of Solids, 20(8).

    Google Scholar 

  • dell’Isola, F., Della Corte, A., & Giorgio, I. (2016). Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Mathematics and Mechanics of Solids.

    Google Scholar 

  • dell’Isola, F., Maurini, C., & Porfiri, M. (2004). Passive damping of beam vibrations through distributed electric networks and piezoelectric transducers: prototype design and experimental validation. Smart Materials and Structures, 13(2), 299.

    Article  Google Scholar 

  • dell’Isola, F., Seppecher, P., & Alibert, J. J. (2019). Pantographic metamaterials: an example of math-emphatically driven design and of its technological challenges. Continuum Mechanics and Thermodynamics, 31(4), 851–884.

    Article  ADS  MathSciNet  Google Scholar 

  • dell’Isola, F., Seppecher, P., & Madeo, A. (2012). How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”. Zeitschrift für angewandte Mathematik und Physik, 63(6).

    Google Scholar 

  • Di Cosmo, F., Laudato, M., & Spagnuolo, M. (2018). Acoustic metamaterials based on local resonances: Homogenization, optimization and applications. Chapter from a book. In: Generalized Models and Non-classical Approaches in Complex Materials. (pp. 247–274) Springer.

    Google Scholar 

  • Gorshkov, A. G., Medvedskii, A. L., Rabinskii, L. N., & Tarlakovskii, D. V. (2004). Waves in continuum media (472p.). Moscow: FIZMATLIT (In Russian).

    Google Scholar 

  • Ivanov, V. A., & Paimushin, V. N. (1995). Refined formulation of dynamic problems of three-layered shells with a transversally soft filler is a numerical-analytical method for solving them. Applied Mechanics and Technical Physics, 36(4), 147–151.

    Google Scholar 

  • Ivanov, V.A., & Paimushin, V. N. (1995). Refinement of the equations of the dynamics of multilayer shells with a transversally soft filler. Izv. RAS. MTT, 3, 142–152.

    Google Scholar 

  • Kostrov, B. V. (1964). Motion of a rigid massive wedge inserted into an elastic medium under the effect of plane wave. Prikl Mat Mekh, 28(1), 99–110. (In Russian).

    MathSciNet  Google Scholar 

  • Maurini, C., dell’Isola, F., & Del Vescovo, D. (2004). Comparison of piezoelectronic networks acting as distributed vibration absorbers. Mechanical Systems and Signal Processing, 18(5), 1243–1271.

    Article  ADS  Google Scholar 

  • Placidi, L., Barchiesi, E., Turco, E., & Rizzi, N. L. (2016). A review on 2D models for the description of pantographic fabrics. Zeitschrift für angewandte Mathematik und Physik, 67(5).

    Google Scholar 

  • Ryl’ko, M. A. (1977). On the motion of a rigid rectangular insertion under the effect of plane wave. Mekh Tverd Tela, 1, 158–164 (In Russian).

    Google Scholar 

  • Set of rules for the design and construction of the joint venture 23-105-2004 Evaluation of vibration in the design and construction and operation of metro facilities. Moscow: Gosstroy Russia (2014).

    Google Scholar 

  • Sheddon, I. (1951). Fourier Transforms (p. 542). New York: McGraw Hill.

    Google Scholar 

  • Rakhmatulin, Kh. A., & Sunchalieva, L. M. (1983). Elastic and elastoplastic properties of the ground upon dynamic loads on the foundation. Department: in VINITI, 4149–4183 (In Russian).

    Google Scholar 

  • Umek, A. (1973). Dynamic responses of building foundations to incident elastic waves. PhD Thesis. Illinois, Ill. Inst. Technol.

    Google Scholar 

  • Vidoli, S., & dell’Isola, F. (2001). Vibration control in plates by uniformly distributed actuators interconnected via electric networks. European Journal of Mechanics - A/Solids, 20(3), 435–456.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The reported study was funded by Russian Foundation for Basic Research, according to the research projects Nos. 19-08-00968 A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia A. Lokteva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Igumnov, L., Tarlakovskii, D.V., Lokteva, N.A., Phung, N.D. (2021). Interaction of Harmonic Waves of Different Types with the Three-Layer Plate Placed in the Soil. In: dell'Isola, F., Igumnov, L. (eds) Dynamics, Strength of Materials and Durability in Multiscale Mechanics. Advanced Structured Materials, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-030-53755-5_8

Download citation

Publish with us

Policies and ethics