Skip to main content

Excitation of the Waves with a Focused Source, Moving Along the Border of Gradient-Elastic Half-Space

  • Chapter
  • First Online:
Dynamics, Strength of Materials and Durability in Multiscale Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 137))

  • 337 Accesses

Abstract

In the frames of the mathematical model of the gradient-elastic continuum, i.e., the medium with the stress–strain state described by the strain tensor, the second gradients of the displacement vector, the asymmetric stress tensor, and the moment stress tensor, we consider the problem of generating disturbances by a moving source. It is assumed that the source moves at a constant speed along the border of the half-space. The problem is considered in a two-dimensional formulation, when all processes are homogeneous along the horizontal transverse coordinate axis. The displacement vector contains two components: longitudinal and vertical transverse. As a result of analytical studies, it has been shown that a moving source will generate waves propagating along the border of a half-space and decreasing exponentially into its depth. Such a wave, in contrast to the classical surface Rayleigh wave, has a dispersion, since its phase velocity is not constant, but depends on the frequency. The displacement amplitudes vary depending on the magnitude of the load of the moving source and its speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abali, B. E., Altenbach, H., dell’Isola, F., Eremeyev, V. A., & Ochsner, A. (Eds.). (2019). New achievements in continuum mechanics and thermodynamics. A tribute to Wolfgang H. Muller. Advanced Structured Materials (Vol. 108, 564 p.). Cham, Switzerland: Springer Nature Switzerland AG. Part of Springer.

    Google Scholar 

  • Abali, B. E., Muller, W., & dell’Isola, F. (2017). Theory and computation of higher gradient elasticity theories based on action principles. Archive of Applied Mechanics, 87(9).

    Google Scholar 

  • Aki, K., & Richards, P. (2009). Quantitative siesmology (2nd ed., p. 700). Mill Valley, CA: University Science Books.

    Google Scholar 

  • Alibert, J. J., Seppecher, P., & dell’Isola, F. (2003). Truss modular beams with deformation energy de-pending on higher displacement gradients. Mathematics and Mechanics of Solids, 8(1).

    Google Scholar 

  • Altenbach, H., Belyaev, A., Eremeyev, V. A.., Krivtsov, A., & Porubov, A. V. (Eds). (2019). Dynamical processes in generalized continua and structures. Advanced Structured Materials (Vol. 103, 526 p.). Cham, Switzerland: Springer Nature Switzerland AG. Part of Springer.

    Google Scholar 

  • Altenbach, H., & Eremeyev V. A. (Eds.). (2013). Generalized continua—from the theory to engineering applications (388 p.). Wien: Springer.

    Google Scholar 

  • Altenbach, H., & Forest, S. (Eds.). (2016). Generalized continua as models for classical and advanced materials. Advanced Structured Materials (Vol. 42, 458 p.). Switzerland: Springer-Verlag.

    Google Scholar 

  • Altenbach, H., Forest, S., & Krivtsov, A. (Eds.). (2013). Generalized continua as models with multi-scale effects or under multi-field actions. Advanced Structured Matherials (Vol. 22, 332 p.). Berlin-Heidelberg: Springer-Verlag.

    Google Scholar 

  • Altenbach, H., Maugin, G. A., Erofeev, V. (Eds). (2011). Mechanics of generalized continua. Advanced Structured Materials (Vol. 7, 350 p.). Berlin-Heidelberg: Springer-Verlag.

    Google Scholar 

  • Altenbach, H., Pouget, J., Rousseau, M., Collet, B., & Michelitsch, T. (Eds.). (2018a). Generalized models and non-classical approaches in complex materials 1. Advanced Structured Materials (Vol. 90, 760 p). Springer International Publishing AG, part of Springer Nature.

    Google Scholar 

  • Altenbach, H., Pouget, J., Rousseau, M., Collet, B., & Michelitsch T. (Eds.). (2018b). Generalized models and non-classical approaches in complex materials 2. Advanced Structured Materials (Vol. 90, 328 p.). Springer International Publishing AG, part of Springer Nature.

    Google Scholar 

  • Auffray, N., dell’Isola, F., Eremeyev, V., Madeo, A., & Rossi, G. (2013). Analytical continuum mechanics Ă  la Hamilton-Piola: least action principle for second gradient continua and capillary fluids. Mathematics and Mechanics of Solids.

    Google Scholar 

  • Bagdoev, A. G., Erofeyev, V. I., & Shekoyan, A. V. (2016). Wave dynamics of generalized continua. Advanced Structured Materials (Vol. 24, 274 p.). Berlin-Heidelberg: Springer-Verlag.

    Google Scholar 

  • Barchiesi, E., Spagnuolo, M., & Placidi, L. (2018). Mechanical metamaterials: a state of the art. Mathematics and Mechanics of Solids.

    Google Scholar 

  • Cosserat, E., et al. (1909). Theorie des Corp Deformables (226 p.). Paris: Librairie Scientifique A. Hermann et Fils.

    Google Scholar 

  • Del Vescovo, D., & Giorgio, I. (2014). Dynamic problems for metamaterials: Review of existing models and ideas for further research. International Journal of Engineering Science, 80, 153–172.

    Article  MathSciNet  Google Scholar 

  • dell’Isola, F., Andreaus, U., & Placidi, L. (2015). At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola. Mathematics and Mechanics of Solids, 20(8).

    Google Scholar 

  • dell’Isola, F., Della Corte, A., & Giorgio, I. (2016a). Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Mathematics and Mechanics of Solids.

    Google Scholar 

  • dell’Isola, F., Della Corte, A., Greco, L., Luongo, A. (2016b). Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with Lagrange multipliers and a perturbation solution. International Journal of Solids and Structures.

    Google Scholar 

  • dell’Isola, F., Giorgio, I., Pawlikowski, M., & Rizzi, N. (2016c). Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proceedings of The Royal Society A, 472(2185).

    Google Scholar 

  • dell’Isola, F., Eremeyev, V., & Porubov, A. (Eds). (2018). Advanced in mechanics of microstructured media and structures. Advanced Structured Materials (Vol. 87, 370 p.). Cham, Switzerland: Springer.

    Google Scholar 

  • dell’Isola, F., Seppecher, P., Alibert, J. J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., et al. (2019a). Pantographic metamaterials: An example of mathematically driven design and of its technological challenges. Continuum Mechanics and Thermodynamics, 31(4), 851–884.

    Article  ADS  MathSciNet  Google Scholar 

  • dell’Isola, F., Seppecher, P., & Alibert, J. J. (2019b). Pantographic metamaterials: An example of mathematically driven design and of its technological challenges. Continuum Mechanics and Thermodynamics, 31(4), 851–884.

    Article  ADS  MathSciNet  Google Scholar 

  • dell’Isola, F., Seppecher, P., & Madeo, A. (2012). How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”. Zeitschrift fĂĽr angewandte Mathematik und Physik, 63(6).

    Google Scholar 

  • Erofeyev, V. I. (2003). Wave processes in solids with microstructure (p. 256). New Jersey, London, Singapore, Hong Kong: World Scientific.

    Book  Google Scholar 

  • Jaramillo, T. J. (1929). A generalization of the energy function of elasticity theory. Dissertation, Department of Mathematics, University of Chicago.

    Google Scholar 

  • Klyuev, V. V. (Ed.). (2004). Non-destructive testing: A handbook in 7t. In I. N. Ermolov & Yu. V. Lange (Eds.), Ultrasonic control (Vol. 3, 864 p.). Moscow: Mashinostroenie. (in Russian).

    Google Scholar 

  • Konenkov, Yu. K. (1960). On the flexural wave of the Rayleigh type. Soviet physics. Acoustics, 6(1), 122–124.

    Google Scholar 

  • Le Roux, J. (1911). Etude geometrique de la flexion, dans les deformations infinitesimaleg d'nn milien continu. Annales Scientifiques de l'École Normale SupĂ©rieure, 28, 523–579.

    Google Scholar 

  • Le Roux, J. (1913). Recherchesg sur la geometrie beg deformatios finies. Annales Scientifiques de l'École Normale SupĂ©rieure, 30, 193–245.

    Google Scholar 

  • Lord Rayleigh. On waves propagated along the plane surface of an elastic solid. Proceedings of the London Mathematical Society. 1885. s1–17(1). 4–11.

    Google Scholar 

  • Maugin G.A. Non-Classical Continuum Mechanics. Advanced Structured Matherials.Vol. 51. Springer, Singapore, 2017. 260 p.

    Google Scholar 

  • Maugin, G. A., & Metrikine A. V. (Eds.). (2018). Mechanics of generalized continua: On hundred years after the Cosserats. Advances in Mathematics and Mechanics (Vol. 21, 338 p.). Berlin: Springer.

    Google Scholar 

  • Neff, P., Ghiba, I.-D., Madeo, A., Placidi L., & Rosi G. (2014). A unifying perspective: the relaxed linear micromorphic continuum. Continuum Mechanics and Thermodynamics, 26(5).

    Google Scholar 

  • Placidi, L., Andreaus, U., & Giorgio, I. (2017). Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. Journal of Engineering Mathematics.

    Google Scholar 

  • Placidi, L., Barchiesi, E., Turco, E., Rizzi, N. L. (2016). A review on 2D models for the description of pantographic fabrics. Zeitschrift fĂĽr angewandte Mathematik und Physik, 67(5).

    Google Scholar 

  • Rahali, Y., Giorgio, I., Ganghoffer, J.-F., & dell’Isola, F. (2015). Homogenization Ă  la Piola produces second gradient continuum models for linear pantographic lattices. International Journal of Engineering Science, 97.

    Google Scholar 

  • Sabodash, P. F., & Filippov I. G. (1971). On the effect of a moving load on an elastic half-space taking into account moment stresses. Durability and Plasticity (pp. 317–321). Moscow: Nauka. (in Russian).

    Google Scholar 

  • Sciarra, G., dell’Isola, F., & Coussy, O. (2007). Second gradient poromechanics. International Journal of Solids and Structures, 44(20).

    Google Scholar 

  • Uglov, A. L., Erofeev, V. I., & Smirnov, A. N. (2009). Acoustic control of equipment in the manufacture and operation (280 p.). Moscow: Nauka. (in Russian).

    Google Scholar 

  • Wilde, M. V., Kaplunov, Yu. D., Kossovich, L. Yu. (2010). Edge and interface resonance phenomena in elastic bodies (280 p.). Moscow: Fizmatlit. (in Russian).

    Google Scholar 

  • Zakharov, D. D. (2002). Konenkov’s waves in anisotropic layered plates. Acoustical Physics, 48(2), 171–175.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Government of the Russian Federation (contract No. 14.Y26.31.0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir I. Erofeev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antonov, A.M., Erofeev, V.I., Malkhanov, A.O., Novoseltseva, N.A. (2021). Excitation of the Waves with a Focused Source, Moving Along the Border of Gradient-Elastic Half-Space. In: dell'Isola, F., Igumnov, L. (eds) Dynamics, Strength of Materials and Durability in Multiscale Mechanics. Advanced Structured Materials, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-030-53755-5_2

Download citation

Publish with us

Policies and ethics