Skip to main content

Mud Shrinkage and Cracking Phenomenon Experimental Identification Using Digital Image Correlation

  • Chapter
  • First Online:
Dynamics, Strength of Materials and Durability in Multiscale Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 137))

Abstract

The main goal of this research was to try, experimentally, to identify the cause of initiation and propagation of cracks network related to desiccation. The work may provide a better understanding of the drying behavior in clayey soils. Kaolin, which is a little swelling “nearly pure” kaolinite, was studied in this context. The experimental method is based on the determination of the local two-dimensional strains and displacements fields using the softwares Vic-2D and Vic-3D on thin layers of the initially saturated clay. Using digital image correlation technique at the macroscopic level, the analyses of strain fields during drying allow to clearly identify and characterize different phenomena such as: shrinkage, stress concentration, initiation, and propagation of cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht, B. A., & Benson, C. H. (2001). Effect of desiccation on compacted natural clays. Journal of Geotechnical & Geoenvironmental Engineering, 127, 67–76. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:1(67).

    Article  Google Scholar 

  • Amarasiri, A. L., & Kodikara, J. K. (2013). Numerical modelling of a field desiccation test. Géotechnique, 63(11), 983–986. https://doi.org/10.1680/geot.12.P.010.

    Article  Google Scholar 

  • Auvray, R., Rosin-Paumier, S., Abdallah, A., & Masrouri, F. (2014). Quantification of soft soil cracking during suction cycles by image processing. European Journal of Environmental and Civil Engineering, 18(1), 11–32.

    Article  Google Scholar 

  • Avila, G. (2004). Study of shrinkage and cracking of clays—Application to clay in Bogota (Doctoral dissertation). Polytechnic University of Catalunya, Barcelona, Spain.

    Google Scholar 

  • Barden, R. J., Madedor, A. O., & Sides, G. R. (1969). Volume change characteristics of unsaturated clays. Journal of Soil Mechanics & Foundations Div, 95(1), 33–51.

    Google Scholar 

  • Bazant, Z. P., & Wittmann, F. H. (1982). Creep and shrinkage in concrete structures. New York: Wiley.

    Google Scholar 

  • Biarez, J., Fleureau, J.-M., Zerhouni, M.-I., & Soepandji, B. S. (1987). Variations de volume des sols argileux lors de cycles de drainage-humidification. Revue Française de Géotechnique, 41, 63–71.

    Google Scholar 

  • Bishop, A. W., & Blight, G. E. (1963). Some aspects of effective stress in saturated and partly saturated soils. Geotechnique, 13, 177–197.

    Article  Google Scholar 

  • Blight, G. E. (1967). Effective stress evaluation for unsaturated soils. Journal of the Soil Mechanics and Foundation Division, Proceedings of the A.S.C.E., 93(S.M.2, Mars), 125–148.

    Google Scholar 

  • Bronswijk, J. J. B. (1990). Shrinkage geometry of a heavy clay soil at various stresses. Soil Science Society of America Journal, 54(5), 1500–1502.

    Article  ADS  Google Scholar 

  • Cheng, W.-Q., Yang, Z-T., Bouchemella, S., Hattab, M., & Bian, H.-B. (2020). Desiccation shrinkage process in clayey soils—Experimental and numerical analysis. Paper in progress.

    Google Scholar 

  • Cornelis, W. M., Corluy, J., Medina, H., Diaz, J., Hartmann, R., Meirvenne, M. V., & Ruiz, M. E. (2006). Measuring and modeling the soil shrinkage characteristic curve. Geoderma, 137(1–2), 179–191.

    Article  ADS  Google Scholar 

  • Corte, A., & Higashi, A. (1960). Experimental research on desiccation cracks in soils. Research Report No. 66. Wilmette, IL, USA: U.S. Army Snow Ice and Permafrost Research Establishment, Corps of Engineers.

    Google Scholar 

  • dell’Isola, F., Seppecher, P., Spagnuolo, M., Barchiesi, E., Hild, F., Lekszycki, T., et al. (2019). Advances in pantographic structures: Design, manufacturing, models, experiments and image analyses. Continuum Mechanics and Thermodynamics, 31(4), 1231–1282.

    Google Scholar 

  • Eid, J., Taibi, S., Fleureau, J. M., & Hattab, M. (2015). Drying, cracks and shrinkage evolution of a natural silt intended for a new earth building material Impact of reinforcement. Construction and Building Materials, 86(13), 120–132.

    Article  Google Scholar 

  • El Hajjar, A., Ouahbi, T., Eid, J., Hattab, M., & Taibi, S. (2020). Shrinkage cracking of unsaturated fine soils: New experimental device and measurement techniques. Strain, e12352. https://doi.org/10.1111/str.12352.

  • Fleureau, J. M., Kheirbek-Saoud, S., Taibi, S., & Soemitro, R. (1993). Behaviour of clayey soils on drying—Wetting paths. Canadian Geotechnical Journal, 30(2), 287–296.

    Article  Google Scholar 

  • Fleureau, J. M., Wignyodarsono, L., & Zerhouni, M. I. (1988). Effects of surfactants on the mechanical properties of a kaolinite in relation to the solid-liquid contact angles. Canadian Geotechnical Journal, 25, 675–683.

    Article  Google Scholar 

  • Fredlund, D. G. (2002). Use of the soil-water characteristic curve in the implementation of unsaturated soil mechanics. In UNSAT 2002, Proceedings, Third International Conference on Unsaturated Soils, Recife, Brazil, March 10–13, 3.

    Google Scholar 

  • Gallipoli, D., Bruno, A. W., Perlot, C., & Mendes, J. (2017). A geotechnical perspective of raw earth building. Acta Geotechnica, 12, 463–476. https://doi.org/10.1007/s11440-016-0521-1.

  • Giorgio, I., De Angelo, M., Turco, E., & Misra, A. (2019). A Biot–Cosserat two-dimensional elastic nonlinear model for a micromorphic medium. Continuum Mechanics and Thermodynamics, 1–13.

    Google Scholar 

  • Giorgio, I., & Scerrato, D. (2017). Multi-scale concrete model with rate-dependent internal friction. European Journal of Environmental and Civil Engineering, 21(7–8), 821–839.

    Article  Google Scholar 

  • Haines, W. B. (1923). The volume changes associated with variations of water content in soil. Journal of Agricultural Science, 13, 296–311.

    Google Scholar 

  • Hammad, T., Fleureau, J. M., & Hattab, M. (2013). Kaolin/montmorillonite mixtures behaviour on oedometric path and microstructural variations. European Journal of Environmental and Civil Engineering, 17(9), 826–840.

    Article  Google Scholar 

  • Hild, F., & Roux, S. (2006). Digital image correlation: From displacement measurement to identification of elastic properties—A review. Strain, 42(2), 69–80.

    Article  Google Scholar 

  • Ighil Ameur, L. (2016). Étude expérimentale de l’endommagement et de la fissuration d’une matrice poreuse (Doctoral dissertation). Université de Lorraine, Metz, France (in French).

    Google Scholar 

  • Ighil Ameur, L., & Hattab, M. (2017). Crack initiation and propagation of clays under indirect tensile strength test by bending related to the initial suction. In Advances in Laboratory Testing and Modelling of Soils and Shales (pp. 173–180). Cham: Springer.

    Google Scholar 

  • Kong, D. F. (1994). Properties of fissured clay (1st ed.). Beijing, China: Geological Publishing Company.

    Google Scholar 

  • Lachenbruch, A. H. (1961). Depth and spacing of tension cracks. Journal of Geophysical Research, 66, 4273–4292.

    Article  ADS  Google Scholar 

  • Lloret, A., Ledesma, A., Rodríguez, R. L., Sánchez, M. J., Olivella, S., & Suriol, J. (1998). Crack initiation in drying soils. In Proceedings of the Second International Conference on Unsaturated Soils, Beijing, China, August 27–30, 1998 (Vol. 1, pp. 497–502). Beijing, China: International Academic Publishers.

    Google Scholar 

  • Longwell, C. R. (1928). Three common types of desert mud cracks. American Journal of Science, 5th Series, XV(86), 136–145.

    Google Scholar 

  • Lu, N., Godt, J. W., & Wu, D. T. (2010). A closed form equation for effective stress in unsaturated soil. Water Resources Research, 46, W05515.

    Google Scholar 

  • Mitchell, J. K. (1986). Practical problems from surprising soil behavior. Journal of Geotechnical Engineering, 112(3), 255–289.

    Article  Google Scholar 

  • Morris, P. H., Graham, J., & Williams, D. J. (1992). Cracking in drying soils. Canadian Geotechnical Journal, 29(2), 262–277.

    Article  Google Scholar 

  • Péron, H. (2008). Desiccation cracking of soils (Doctoral dissertation). Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

    Google Scholar 

  • Péron, H., Hueckel, T., Laloui, L., & Hu, L. B. (2009). Fundamentals of desiccation cracking of fine grained soils: Experimental characterization and mechanisms identification. Canadian Geotechnical Journal, 46(10), 1177–1201.

    Article  Google Scholar 

  • Rijniersce, K. (1983). A simulation model for physical soil ripening in the Ijsselmeerpolder. Lelystad, The Netherlands: Rijksdienst voor de Ijsselmeerpolders.

    Google Scholar 

  • Santamarina, J. C. (2001). Soils behavior at microscale: Particle forces. In Proceedings of a Symposium on Soil Behavior and Soft Ground Construction, in Honor of Charles C. Ladd, October 2001, MIT.

    Google Scholar 

  • Scholtès, L., Hicher, P., Nicot, F., Chareyre, B., & Darve, F. (2009). On the capillary stress tensor in wet granular materials. International Journal for Numerical and Analytical Methods in Geomechanics, 33(10), 1289–1313.

    Article  ADS  Google Scholar 

  • Tang, C.-S., Pei, X.-J., Wang, D.-Y., Shi, B., & Li, J. (2014). Tensile strength of compacted clayey soil. Journal of Geotechnical & Geoenvironmental Engineering, 141(4). https://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0001267.

  • Tang, C.-S., Shi, B., Liu, C., Suo, W. B., & Gao, L. (2011). Experimental characterization of shrinkage and desiccation cracking in thin clay layer. Applied Clay Science, 52(1–2), 69–77.

    Article  Google Scholar 

  • van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(89), 2–898.

    Google Scholar 

  • Wei, X. (2014). Etude micro-macro de la fissuration des argiles soumises à la dessiccation (Doctoral dissertation). Ecole Centrale Paris, Châtenay-Malabry, France (in French).

    Google Scholar 

  • Wei, X., Hattab, M., Bompard, P., & Fleureau, J.-M. (2016). Highlighting some mechanisms of crack formation and propagation in clays on drying path. Geotechnique, 66(4), 287–300.

    Article  Google Scholar 

  • Wei, X., Hattab, M., Fleureau, J. M., & Hu, R. L. (2013). Micro-macro-experimental study of two clayey materials on drying paths. Bulletin of Engineering Geology and the Environment, 72(3), 495–508.

    Article  Google Scholar 

  • Willden, R., & Mabey, D. R. (1961). Giant desiccation fissures on the black rock and smoke creek deserts, Nevada. Science, 133(3461), 1359–1360.

    Article  ADS  Google Scholar 

  • Yang, Z.-T. (2020). Étude expérimentale et modélisation de la fissuration hydrique d’un sol argileux 2020 (Doctoral dissertation in progress). Université de Lorraine, Metz, France (in French).

    Google Scholar 

  • Yuan, C., & Chareyre, B. (2017). A pore-scale method for hydromechanical coupling in deformable granular media. Computer Methods in Applied Mechanics and Engineering, 318, 1066–1079. https://doi.org/10.1016/j.cma.2017.02.024.

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdia Hattab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hattab, M., Taibi, S., Fleureau, JM. (2021). Mud Shrinkage and Cracking Phenomenon Experimental Identification Using Digital Image Correlation. In: dell'Isola, F., Igumnov, L. (eds) Dynamics, Strength of Materials and Durability in Multiscale Mechanics. Advanced Structured Materials, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-030-53755-5_19

Download citation

Publish with us

Policies and ethics