Skip to main content

The Dynamics of Eccentric Vibration Mechanism (Part 2)

  • Chapter
  • First Online:
Dynamics, Strength of Materials and Durability in Multiscale Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 137))

Abstract

This paper presents a detailed study of the dynamics of the two-piston vibro-impact mechanism with a crank vibration exciter. The mechanism has quite a wide range of applications: It is effective for vibro-impact compaction of various types of soil, sand and concrete in strained industrial conditions; for breaking the ice and other harder objects; driving piles and structures, etc. The presented mathematical model (MM) is a substantially nonlinear dynamic system with a variable structure. An original method for numerical–analytical study of dynamic characteristics, such as periodic motion modes with alternating impact interaction of pistons, as well as complex motion modes with an arbitrary number of impacts, including chaotic ones, has been elaborated on the basis of the point mapping method. Thus, it was possible to obtain for the first time the engineering formulas for tuning the mechanism into required mode of operation, at the stage of preliminary MM dynamic analysis, using a special coordinate transformation and the geometry of the Poincaré surface of section. The obtained engineering formulas allow us to indicate the regions of various qualitative behavior of the mechanism in the parameter space. The bifurcation diagrams make it possible to determine the influence of the main parameters on the processes of reorganization of motion modes, starting from the simplest to the most complex modes, including chaotic ones. The obtained results and proposed numerical–analytical approaches for investigating the dynamic characteristics of crank-type vibro-impact mechanisms enable practitioners to use them for tuning and analyzing the operational regimes of specific mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alibert J.J., Seppecher P., dell’Isola F. Truss modular beams with deformation energy depending on higher displacement gradients. Mathematics and Mechanics of Solids, 2003, 8(1)

    Google Scholar 

  • Arkhangelskiy A. Ya. C++Builder 6. Spravochnoe posobiye. M.:Binom-Press, 2002. – p.544 (in Russian).

    Google Scholar 

  • Auffray N., dell’Isola F., Eremeyev V., Madeo A., Rossi G. Analytical continuum mechanics à la Hamilton-Piola: least action principle for second gradient continua and capillary fluids. Mathematics and Mechanics of Solids, 2013

    Google Scholar 

  • Babitskiy V. I., Krupenin V. L. Oscillations in Strongly Nonlinear Systems. Science, 1985, p. 320, (in Russian).

    Google Scholar 

  • Babitsky, V. I. (1998). Theory of Vibro-Impact Systems. New York: Springer. ((in Russian)).

    MATH  Google Scholar 

  • Babitsky, V. I. Theory of Vibro-impact Systems and Applications, Springer Science & Business Media, 2013.

    Google Scholar 

  • Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M. Numerical methods. Binom. Laboratoriya znaniy, 2003 – p. 640 (in Russian).

    Google Scholar 

  • Barchiesi, E., Spagnuolo, M., & Placidi, L. (2018). Mechanical metamaterials: A state of the art. Mathematics and Mechanics of Solids.

    Google Scholar 

  • Bernardini D., & Litak, G. An overview of 0–1 test for chaos, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 38, no. 5. 2016, p. 1433–1450.

    Google Scholar 

  • Biderman V. L. The Applied Theory of Mechanical Oscillations. High School, 1972, p. 416, (in Russian).

    Google Scholar 

  • Bogodukhov S. I., Grebenyuk V. F., Proskurin A. D. Processing of strengthened surfaces in mechanical engineering a maintenance. Mechanical Engineering, 2005, p. 256, (in Russian).

    Google Scholar 

  • Cveticanin, L. (2002). The motion of a two-mass system with non-linear connection. Journal of Sound and Vibration, 252(2), 361–369.

    Article  ADS  MathSciNet  Google Scholar 

  • Del Vescovo, D., & Giorgio, I. (2014). Dynamic problems for metamaterials: Review of existing models and ideas for further research. International Journal of Engineering Science, 80, 153–172.

    Article  MathSciNet  Google Scholar 

  • dell’Isola F., Andreaus U, Placidi L. At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola. Mathematics and Mechanics of Solids, 2015, 20(8)

    Google Scholar 

  • dell’Isola F., Cuomo M., Greco L., Della Corte A. Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. Journal of Engineering Mathematics, 2017

    Google Scholar 

  • dell’Isola, F., Della, C. A., & Giorgio, I. (2016). Higher-gradient continua: The legacy of Piola, Mindlin. Mathematics and Mechanics of Solids: Sedov and Toupin and some future research perspectives.

    MATH  Google Scholar 

  • dell’Isola F., Della Corte A., Greco L., Luongo A. Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with Lagrange multipliers and a perturbation solution. International Journal of Solids and Structures, 2016

    Google Scholar 

  • dell’Isola F., Giorgio I., Pawlikowski M., Rizzi N. Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proceedings of The Royal Society A, 2016, 472(2185)

    Google Scholar 

  • dell’Isola, F., Seppecher, P., & Alibert, J. J. (2019). Pantographic metamaterials: An example of mathematically driven design and of its technological challenges. Continuum Mechanics and Thermodynamics, 31(4), 851–884.

    Article  ADS  MathSciNet  Google Scholar 

  • dell’Isola F., Seppecher P., Madeo A. How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”. Zeitschrift für angewandte Mathematik und Physik, 2012, 63(6)

    Google Scholar 

  • Feigin M.I. Forced oscillations of systems with discontinuous nonlinearities. M.:Nauka, 1994. –p. 288 (in Russian).

    Google Scholar 

  • Giorgio I. Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures. Zeitschrift für angewandte Mathematik und Physik, 2016

    Google Scholar 

  • Goebel, R., Sanfelice, R. G., & Teel, A. R. (2008). Invariance principles for switching systems via hybrid systems techniques. Systems and Control Letters, 57, 980–986.

    Article  MathSciNet  Google Scholar 

  • Igumnov, L. A., Metrikin, V. S., & Nikiforova, I. V. (2017). The dynamics of eccentric vibration mechanism (Part 1). JVE Journal of Vibroengineering, 19, 4816–5656.

    Article  Google Scholar 

  • Ing, J., Pavlovskaia, E. E., Wiercigroch, M., & Banerjee, S. (2010). Bifurcation Analysis of Impact Oscillator with One-Sided Elastic Constraint. Physica D: Nonlinear Phenomena, 239(3), 12–321.

    MATH  Google Scholar 

  • Kernighan B.W., Ritchie D.M. The C programming language. Wilyams, 2016. – p.288.

    Google Scholar 

  • Kobrinskiy A. A., Kobrinskiy A. E.Vibro-Impact Systems. Science, 1973, p. 592, (in Russian).

    Google Scholar 

  • Leine, R. I., & Heimsch, T. F. (2012). Global uniform symptotic attractive stability of the non-autonomous bouning ball system. Journal Physica, 241, 2029–2041.

    Google Scholar 

  • Liu, Y., Pavlovskaia, E. E., Wiercigroch, M., & Peng, Z. K. (2015). Forward and Backward Motion Control of a Vibro-Impact Capsule System. Int. J. Non-LinearMech., 70, 30–46.

    Article  ADS  Google Scholar 

  • Luo, G. W., & Ma, X. H. L. (2008). Periodic – impact motions and bifurcations in dynamics of a plastic impact oscillator with a frictional slider. Journal Mechanics a/Solids, 27, 1088–1107.

    Article  ADS  MathSciNet  Google Scholar 

  • Masri, S. F., & Caughey, T. K. (1966). On the stability of the impact damper. Journal of Applied Mechanics, 33(3), 586–592.

    Article  ADS  MathSciNet  Google Scholar 

  • Nagaev R.F. Periodic modes of vibration motion. M.: Nauka, 1978. – p. 160, (in Russian).

    Google Scholar 

  • Neimark Yu. I. The point mapping method in the theory of nonlinear oscillations. M.: LIBROKOM, 2010. – p. 472, (in Russian).

    Google Scholar 

  • Pavloaskaia, E., & Wiercigroch, M. (2003). Periodic solution finder for an impact oscillator with a drift. Journal of Sound and Vibration, 267(4), 893–911.

    Article  ADS  Google Scholar 

  • Pavlovskaia E., Hendry D.C., WiercigrochM. Modelling of high frequency vibro-impact drilling, Int. J. Mech. Sci. 91. 2015, p. 110–119.

    Google Scholar 

  • Placidi L., Andreaus U., Giorgio I., Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. Journal of Engineering Mathematics, 2017

    Google Scholar 

  • Placidi L., Barchiesi E., Turco E., Rizzi N.L. A review on 2D models for the description of pantographic fabrics. Zeitschrift für angewandte Mathematik und Physik, 2016, 67(5)

    Google Scholar 

  • Rahali Y., Giorgio I., Ganghoffer J.-F., dell’Isola F. Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. International Journal of Engineering Science, 2015, 97

    Google Scholar 

  • Shilkov V. A., Savalyuk A. D., Metrikin V. S., Polyakov A. A., Shabardin A. K., Alyokhin A. I., OmenenkoiYaA.c. 1020479 USSR, A Vibro-ram, No. 3376593/29–33, 2005, (in Russian)

    Google Scholar 

  • Stroustrup B. The C++ programming language. Binom, 2011. – p.1136.

    Google Scholar 

  • Turco E., Dell’Iola F., Cazzani A., Rizzi N.L. Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Zeitschrift für angewandte Mathematik und Physik, 2016

    Google Scholar 

  • Tusset, A. M., Janzen, F. C., Piccirillo, V., Rocha, R. T., Balthazar, J. M. and Litak, G. (2017). On nonlinear dynamics of a parametrically excited pendulum using both active control and passive rotational (MR) damper. Journal of Vibration and Control, 24(9), 1587–1599,

    Google Scholar 

  • Vagapov, I. K., Ganiev, M. M., & Shinkarev, A. S. (2007). Forced vibrations of two nonlinearly connected solid waveguides under static load. Journal of Sound and Vibration, 302, 425–141. ((in Russian)).

    Article  ADS  Google Scholar 

  • Vagapov, I. K., Ganiyev, M. M., & Shinkaryov, A. S. (2008). Theoretically and experimentally investigating the dynamics of an ultrasonic vibro-impact system with an intermediate striker. Mechanical Engineering, 5, 3–24. ((in Russian)).

    Google Scholar 

  • Zakrzhevskiy, M. V. (1980). Oscillations of a Substantially Nonlinear Substantially-Nonlinear Mechanical Systems (p. 190). Riga: Zinatne.

    Google Scholar 

  • Zheleztsov N. A. The point transform method and the problem of forced oscillations of an oscillator with “combined” friction. PMM, Vol. 1949, Issue 13, 1, p. 3–40, (in sRussian).

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Russian Science Foundation (16-19-10237-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vladimir Metrikin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Igumnov, L., Metrikin, S.V., Nikiforova, V.I., Fevral’skikh, L.N. (2021). The Dynamics of Eccentric Vibration Mechanism (Part 2). In: dell'Isola, F., Igumnov, L. (eds) Dynamics, Strength of Materials and Durability in Multiscale Mechanics. Advanced Structured Materials, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-030-53755-5_12

Download citation

Publish with us

Policies and ethics