Skip to main content

Pathophysiology of Paroxysmal Dyskinesia

  • Chapter
  • First Online:
Paroxysmal Movement Disorders

Abstract

Paroxysmal dyskinesias are a group of hyperkinetic movement disorders characterized by episodes of dystonia, chorea, athetosis, and ballism that appear isolated or in combination without loss of consciousness. We can differentiate various forms of paroxysmal dyskinesia based on genotypic and phenotypic features: Paroxysmal kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, and paroxysmal exercise-induced dyskinesia. However, all disorders display common traits, such as the paroxysmal nature and the presence of triggering factors. The episodic nature of these diseases suggests that they result from neuronal network instability and from a general state of hyperexcitability. This augmented excitability is also responsible for the epileptic phenotype that is often associated with paroxysmal dyskinesia.

In this chapter, we summarize the current knowledge on the main genetic factors responsible for paroxysmal dyskinesia and the underlying physiopathological mechanisms that converge into the final common pathway of neuronal network hyperexcitability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GLUT1:

Glucose transporter type 1

HAGH:

Hydroxyacylglutathione hydrolase

KCNMA1:

Ca2+-activated K+ channel subunit α

KO:

Knockout

NT:

Neurotransmitter

PED:

Paroxysmal exercise-induced dyskinesia

PKD:

Paroxysmal kinesigenic dyskinesia

PNKD:

Paroxysmal non-kinesigenic dyskinesia gene

PNKD:

Paroxysmal non-kinesigenic dyskinesia

PRRT2:

Proline-rich transmembrane protein 2

PxD:

Paroxysmal dyskinesia

SCN8A:

Voltage-gated Na+ channel type 8

SLC2A1:

Solute carrier family 2 member 1 gene

References

  1. Bhatia KP. Paroxysmal dyskinesias definition, historical aspects, and classification paroxysmal kinesigenic. Mov Disord. 2011;26(6):1157–65.

    Article  PubMed  Google Scholar 

  2. Meneret A, Roze E. Paroxysmal movement disorders: an update. Rev Neurol (Paris). 2016;172(8–9):433–45.

    Article  CAS  Google Scholar 

  3. Demirkiran M, Jankovic J. Paroxysmal dyskinesias: clinical features and classification. Ann Neurol. 1995;38(4):571–9.

    Article  CAS  PubMed  Google Scholar 

  4. Unterberger I, Trinka E. Review: diagnosis and treatment of paroxysmal dyskinesias revisited. Ther Adv Neurol Disord. 2008;1(2):67–74.

    Article  Google Scholar 

  5. Bhatia KP, Griggs RC, Ptacek LJ. Episodic movement disorders as channelopathies. Mov Disord. 2000;15(3):429–33.

    Article  CAS  PubMed  Google Scholar 

  6. Fink M, Duprat F, Lesage F, Reyes R, Romey G, Heurteaux C, et al. Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. EMBO J. 1996;15(24):6854–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fouad GT, Servidei S, Durcan S, Bertini E, Ptácek LJ. A gene for familial paroxysmal dyskinesia (FPD1) maps to chromosome 2q. Am J Hum Genet. 1996;59(1):135–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Du W, Bautista JF, Yang H, Diez-Sampedro A, You SA, Wang L, et al. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet. 2005;37(7):733–8.

    Article  CAS  PubMed  Google Scholar 

  9. Gardella E, Becker F, Møller RS, Schubert J, Lemke JR, Larsen LHG, et al. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol. 2016;79(3):428–36.

    Article  CAS  PubMed  Google Scholar 

  10. Erro R, Sheerin UM, Bhatia KP. Paroxysmal dyskinesias revisited: a review of 500 genetically proven cases and a new classification. Mov Disord. 2014;29:1108–16.

    Article  PubMed  Google Scholar 

  11. Erro R, Bhatia KP, Espay AJ, Striano P. The epileptic and nonepileptic spectrum of paroxysmal dyskinesias: channelopathies, synaptopathies, and transportopathies. Mov Disord. 2017;32:310–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen DH, Matsushita M, Rainier S, Meaney B, Tisch L, Feleke A, et al. Presence of alanine-to-valine substitutions in myofibrillogenesis regulator 1 in paroxysmal nonkinesigenic dyskinesia: confirmation in 2 kindreds. Arch Neurol. 2005;62(4):597–600.

    Article  PubMed  Google Scholar 

  13. Lee HY, Xu Y, Huang Y, Ahn AH, Auburger GWJ, Pandolfo M, et al. The gene for paroxysmal non-kinesigenic dyskinesia encodes an enzyme in a stress response pathway. Hum Mol Genet. 2004;13(24):3161–70.

    Article  CAS  PubMed  Google Scholar 

  14. Wang D, Kranz-Eble P, De Vivo DC. Mutational analysis of GLUT1 (SLC2A1) in Glut-1 deficiency syndrome. Hum Mutat. 2000;16(3):224–31.

    Article  CAS  PubMed  Google Scholar 

  15. Vermeer S, Koolen DA, Visser G, Brackel HJL, van der Burgt I, de Leeuw N, et al. A novel microdeletion in 1(p34.2p34.3), involving the SLC2A1 (GLUT1) gene, and severe delayed development. Dev Med Child Neurol. 2007;49(5):380–4.

    Article  PubMed  Google Scholar 

  16. Chen W-J, Lin Y, Xiong Z-Q, Wei W, Ni W, Tan G-H, et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet. 2011;43(12):1252–5.

    Article  CAS  PubMed  Google Scholar 

  17. Michetti C, Corradi A, Benfenati F. PRRT2, a network stability gene. Oncotarget. 2017;8(34):55770–1.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee HY, Huang Y, Bruneau N, Roll P, Roberson EDO, Hermann M, et al. Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Rep. 2012;1(1):2–12.

    Article  CAS  PubMed  Google Scholar 

  19. Gardiner AR, Jaffer F, Dale RC, Labrum R, Erro R, Meyer E, et al. The clinical and genetic heterogeneity of paroxysmal dyskinesias. Brain. 2015;138(12):3567–80.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell. 2005;122(6):957–68.

    Article  CAS  PubMed  Google Scholar 

  21. Rossi P, Sterlini B, Castroflorio E, Marte A, Onofri F, Valtorta F, et al. A novel topology of proline-rich transmembrane protein 2 (PRRT2): hints for an intracellular function at the synapse. J Biol Chem. 2016;291(12):6111–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Valente P, Castroflorio E, Rossi P, Fadda M, Sterlini B, Cervigni RI, et al. PRRT2 is a key component of the Ca2+-dependent neurotransmitter release machinery. Cell Rep. 2016;15(1):117–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Coleman J, Jouannot O, Ramakrishnan SK, Zanetti MN, Wang J, Salpietro V, et al. PRRT2 regulates synaptic fusion by directly modulating SNARE complex assembly. Cell Rep. 2018;22(3):820–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schwenk J, Baehrens D, Haupt A, Bildl W, Boudkkazi S, Roeper J, et al. Regional diversity and developmental dynamics of the AMPA-receptor proteome in the mammalian brain. Neuron. 2014;84(1):41–54.

    Article  CAS  PubMed  Google Scholar 

  25. Liu YT, Nian FS, Chou W, Tai CY, Kwan SY, Chen C, et al. PRRT2 mutations lead to neuronal dysfunction and neurodevelopmental defects. Oncotarget. 2016;7(26):39184–96.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Millar AG, Bradacs H, Charlton MP, Atwood HL. Inverse relationship between release probability and readily releasable vesicles in depressing and facilitating synapses. J Neurosci. 2002;22(22):9661–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scharfman HE, Brooks-Kayal AR. Is plasticity of GABAergic mechanisms relevant to epileptogenesis? Adv Exp Med Biol. 2014;813:133–50.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Valente P, Romei A, Fadda M, Sterlini B, Lonardoni D, Forte N, et al. Constitutive inactivation of the PRRT2 gene alters short-term synaptic plasticity and promotes network hyperexcitability in hippocampal neurons. Cereb Cortex. 2019;29(5):2010–33.

    Article  PubMed  Google Scholar 

  29. Fruscione F, Valente P, Sterlini B, Romei A, Baldassari S, Fadda M, et al. PRRT2 controls neuronal excitability by negatively modulating Na+ channel 1.2/1.6 activity. Brain. 2018;141(4):1000–16.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ogiwara I, Miyamoto H, Morita N, Atapour N, Mazaki E, Inoue I, et al. Nav1.1 Localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an scn1a gene mutation. J Neurosci. 2007;27(22):5903–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kole MHP, Stuart GJ. Signal processing in the axon initial segment. Neuron. 2012;73(2):235–47.

    Article  CAS  PubMed  Google Scholar 

  32. Michetti C, Castroflorio E, Marchionni I, Forte N, Sterlini B, Binda F, et al. The PRRT2 knockout mouse recapitulates the neurological diseases associated with PRRT2 mutations. Neurobiol Dis. 2017;99:66–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ebrahimi-Fakhari D, Saffari A, Westenberger A, Klein C. The evolving spectrum of PRRT2-associated paroxysmal diseases. Brain. 2015;138(12):3476–95.

    Article  PubMed  Google Scholar 

  34. Tan GH, Liu YY, Wang L, Li K, Zhang ZQ, Li HF, et al. PRRT2 deficiency induces paroxysmal kinesigenic dyskinesia by regulating synaptic transmission in cerebellum. Cell Res. 2018;28(1):90–110.

    Article  CAS  PubMed  Google Scholar 

  35. Bruno MK, Lee HY, Auburger GWJ, Friedman A, Nielsen JE, Lang AE, et al. Genotype-phenotype correlation of paroxysmal nonkinesigenic dyskinesia. Neurology. 2007;68(21):1782–9.

    Article  CAS  PubMed  Google Scholar 

  36. Shen Y, Lee HY, Rawson J, Ojha S, Babbitt P, Fu YH, et al. Mutations in PNKD causing paroxysmal dyskinesia alters protein cleavage and stability. Hum Mol Genet. 2011;20(12):2322–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shen Y, Ge W-P, Li Y, Hirano A, Lee H-Y, Rohlmann A, et al. Protein mutated in paroxysmal dyskinesia interacts with the active zone protein RIM and suppresses synaptic vesicle exocytosis. Proc Natl Acad Sci U S A. 2015;112:2935–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaeser PS, Südhof TC. RIM function in short- and long-term synaptic plasticity. Biochem Soc Trans. 2005;33(Pt 6):1345–9.

    Article  CAS  PubMed  Google Scholar 

  39. Lee HY, Nakayama J, Xu Y, Fan X, Karouani M, Shen Y, et al. Dopamine dysregulation in a mouse model of paroxysmal nonkinesigenic dyskinesia. J Clin Invest. 2012;122(2):507–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. De Vivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Harik SI. Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med. 1991;325(10):703–9.

    Article  PubMed  Google Scholar 

  41. Klepper J, Scheffer H, Elsaid MF, Kamsteeg E-J, Leferink M, Ben-Omran T. Autosomal recessive inheritance of GLUT1 deficiency syndrome. Neuropediatrics. 2009;40(5):207–10.

    Article  CAS  PubMed  Google Scholar 

  42. Wang D, Pascual JM, Yang H, Engelstad K, Jhung S, Sun RP, et al. Glut-1 deficiency syndrome: clinical, genetic, and therapeutic aspects. Ann Neurol. 2005;57(1):111–8.

    Article  CAS  PubMed  Google Scholar 

  43. Leen WG, Klepper J, Verbeek MM, Leferink M, Hofste T, Van Engelen BG, et al. Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain. 2010;133(3):655–70.

    Article  PubMed  Google Scholar 

  44. Hao SS, Feng YH, Zhang GB, Wang AP, Wang F, Wang P. Neuropathophysiology of paroxysmal, systemic, and other related movement disorders. Eur Rev Med Pharmacol Sci. 2015;19(13):2452–60.

    PubMed  Google Scholar 

  45. Schneider SA, Paisan-Ruiz C, Garcia-Gorostiaga I, Quinn NP, Weber YG, Lerche H, et al. GLUT1 gene mutations cause sporadic paroxysmal exercise-induced dyskinesias. Mov Disord. 2009;24(11):1684–8.

    Article  PubMed  Google Scholar 

  46. Leary LD, Wang D, Nordli DR, Engelstad K, De Vivo DC. Seizure characterization and electroencephalographic features in Glut-1 deficiency syndrome. Epilepsia. 2003;44(5):701–7.

    Article  PubMed  Google Scholar 

  47. Klepper J, Diefenbach S, Kohlschütter A, Voit T. Effects of the ketogenic diet in the glucose transporter 1 deficiency syndrome. Prostaglandins Leukot Essent Fat Acids. 2004;70(3):321–7.

    Article  CAS  Google Scholar 

  48. Wang D, Pascual JM, Yang H, Engelstad K, Mao X, Cheng J, et al. A mouse model for Glut-1 haploinsufficiency. Hum Mol Genet. 2006;15(7):1169–79.

    Article  CAS  PubMed  Google Scholar 

  49. Nakamura S, Osaka H, Muramatsu S-I, Takino N, Ito M, Aoki S, et al. Gene therapy for a mouse model of glucose transporter-1 deficiency syndrome. Mol Genet Metab Rep. 2017;10:67–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. De Vivi Dc, Wang D, Pascual JM, Ho YY. Glucose transporter protein syndromes. Int Rev Neurobiol. 2002;51:259–88.

    Google Scholar 

  51. Pascual JM, Van Heertum RL, Wang D, Engelstad K, De Vivo DC. Imaging the metabolic footprint of Glut1 deficiency on the brain. Ann Neurol. 2002;52(4):458–64.

    Article  CAS  PubMed  Google Scholar 

  52. Trudeau MM, Dalton JC, Day JW, Ranum LPW, Meisler MH. Heterozygosity for a protein truncation mutation of sodium channel SCN8A in a patient with cerebellar atrophy, ataxia, and mental retardation. J Med Genet. 2006;43(6):527–30.

    Article  CAS  PubMed  Google Scholar 

  53. Veeramah KR, O’Brien JE, Meisler MH, Cheng X, Dib-Hajj SD, Waxman SG, et al. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet. 2012;90(3):502–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wagnon JL, Korn MJ, Parent R, Tarpey TA, Jones JM, Hammer MF, et al. Convulsive seizures and SUDEP in a mouse model of SCN8A epileptic encephalopathy. Hum Mol Genet. 2015;24(2):506–15.

    Article  CAS  PubMed  Google Scholar 

  55. Niday Z, Tzingounis AV. Potassium channel gain of function in epilepsy: an unresolved paradox. Neuroscientist. 2018;24(4):368–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang Z-B, Tian MQ, Gao K, Jiang YW, Wu Y. De novo KCNMA1 mutations in children with early-onset paroxysmal dyskinesia and developmental delay. Mov Disord. 2015;30(9):1290–2.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Benfenati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corradi, A.M., Valente, P., Michetti, C., Benfenati, F. (2021). Pathophysiology of Paroxysmal Dyskinesia. In: Sethi, K.D., Erro, R., Bhatia, K.P. (eds) Paroxysmal Movement Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-53721-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53721-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53720-3

  • Online ISBN: 978-3-030-53721-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics