Skip to main content

Paroxysmal Exercise-Induced Dyskinesia

  • Chapter
  • First Online:
Paroxysmal Movement Disorders
  • 448 Accesses

Abstract

Paroxysmal exercise-induced dyskinesia (PED) is a clinical syndrome manifesting with recurrent attacks of dystonia usually lasting between 15 and 40 min, although exceptions are possible, and that are brought on by sustained exercise. Over the last years, the etiological spectrum of PED has been increasingly expanding to include a number of genetic disorders, some of which are treatable conditions.

In the current chapter, we will provide an overview of the different conditions associated with PED and propose a workup to reach a definitive diagnosis, upon which treatment options heavily rely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lance JW. Familial paroxysmal dystonic choreoathetosis and its differentiation from related syndromes. Ann Neurol. 1977;2:285–93.

    Article  CAS  Google Scholar 

  2. Suls A, Dedeken P, Goffin K, et al. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain. 2008;131(Pt 7):1831–44.

    Article  Google Scholar 

  3. Weber YG, Storch A, Wuttke TV, et al. GLUT1 mutations are cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest. 2008;118(6):2157–68.

    Article  CAS  Google Scholar 

  4. Schneider SA, Paisan-ruiz C, Garcia-gorostiaga I, et al. GLUT1 gene mutations cause sporadic paroxysmal exercise-induced dyskinesias. Mov Disord. 2009;24:1684–96.

    Article  Google Scholar 

  5. Erro R, Stamelou M, Ganos C, et al. The clinical syndrome of paroxysmal exercise-induced dystonia: diagnostic outcomes and an algorithm. Mov Disord Clin Pract. 2014;1:57–61.

    Article  Google Scholar 

  6. Yang H, Wang D, Engelstad K, et al. Glut1 deficiency syndrome and erythrocyte glucose uptake assay. Ann Neurol. 2011;70:996–1005.

    Article  CAS  Google Scholar 

  7. Leen WG, Klepper J, Verbeek MM, et al. Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain. 2010;133:655–70.

    Article  Google Scholar 

  8. Erro R, Sheerin UM, Bhatia KP. Paroxysmal dyskinesias revisited: a review of 500 genetically proven cases and a new classification. Mov Disord. 2014;29(9):1108–16.

    Article  Google Scholar 

  9. Rotstein M, Engelstad K, Yang H, et al. Glut1 deficiency: inheritance pattern determined by haploinsufficiency. Ann Neurol. 2010;68:955–8.

    Article  Google Scholar 

  10. Gardiner AR, Jaffer F, Dale RC, et al. The clinical and genetic heterogeneity of paroxysmal dyskinesias. Brain. 2015;138:3567–80.

    Article  Google Scholar 

  11. Ohshiro-Sasaki A, Shimbo H, Takano K, et al. A three-year-old boy with glucose transporter type 1 deficiency syndrome presenting with episodic ataxia. Pediatr Neurol. 2014;50:99–100.

    Article  Google Scholar 

  12. Reis S, Matias J, Machado R, et al. Paroxysmal ocular movements – an early sign in Glut1 deficiency syndrome. Metab Brain Dis. 2018;33:1381–83.

    Google Scholar 

  13. Klepper J, Leiendecker B, Eltze C, et al. Paroxysmal nonepileptic events in Glut1 deficiency. Mov Disord Clin Pract. 2016;3(6):607–10.

    Article  Google Scholar 

  14. Ramm-Pettersen A, Nakken KO, Skogseid IM, et al. Good outcome in patients with early dietary treatment of GLUT-1 deficiency syndrome: results from a retrospective Norwegian study. Dev Med Child Neurol. 2013;55(5):440–7.

    Article  Google Scholar 

  15. Leen WG, Mewasingh L, Verbeek MM, et al. Movement disorders in GLUT1 deficiency syndrome respond to the modified Atkins diet. Mov Disord. 2013;28(10):1439–42.

    Article  Google Scholar 

  16. Guimaraes J, Vale SJ. Paroxysmal dystonia induced by exercise and acetazolamide. Eur J Neurol. 2000;7(2):237–40.

    Article  CAS  Google Scholar 

  17. Baschieri F, Batla A, Erro R, et al. Paroxysmal exercise-induced dystonia due to GLUT1 mutation can be responsive to levodopa: a case report. J Neurol. 2014;261(3):615–6.

    Article  Google Scholar 

  18. Wijemanne S, Jankovic J. Dopa-responsive dystonia--clinical and genetic heterogeneity. Nat Rev Neurol. 2015;11:414–24.

    Article  CAS  Google Scholar 

  19. Dale RC, Melchers A, Fung VS, et al. Familial paroxysmal exercise-induced dystonia: atypical presentation of autosomal dominant GTP-cyclohydrolase 1 deficiency. Dev Med Child Neurol. 2010;52:583–6.

    Article  Google Scholar 

  20. Peters H, Buck N, Wanders R, et al. ECHS1 mutations in Leigh disease: a new inborn error of metabolism affecting valine metabolism. Brain. 2014;137:2903–8.

    Article  Google Scholar 

  21. Haack TB, Jackson CB, Murayama K, et al. Deficiency of ECHS1 causes mitochondrial encephalopathy with cardiac involvement. Ann Clin Transl Neurol. 2015;2:492–509.

    Article  CAS  Google Scholar 

  22. Korenke GC, Nuoffer J-M, Alhaddad B, et al. Paroxysmal dyskinesia in ECHS1 defect with globus pallidus lesions. Neuropediatrics. 2016;47.

    Google Scholar 

  23. Olgiati S, Skorvanek M, Quadri M, et al. Paroxysmal exercise-induced dystonia within the phenotypic spectrum of ECHS1 deficiency. Mov Disord. 2016;31:1041–8.

    Article  CAS  Google Scholar 

  24. Mahajan A, Constantinou J, Sidiropoulos C. ECHS1 deficiency-associated paroxysmal exercise-induced dyskinesias: case presentation and initial benefit of intervention. J Neurol. 2017;264:185–7.

    Article  Google Scholar 

  25. Patel KP, O’Brien TW, Subramony SH, et al. The spectrum of pyruvate dehydrogenase complex deficiency: clinical, biochemical and genetic features in 371 patients. Mol Genet Metab. 2012;106:385–94.

    Article  Google Scholar 

  26. Friedman J, Feigenbaum A, Chuang N, et al. Pyruvate dehydrogenase complex-E2 deficiency causes paroxysmal exercise-induced dyskinesia. Neurology. 2017;89(22):2297–8.

    Article  CAS  Google Scholar 

  27. McWilliam CA, Ridout CK, Brown RM, et al. Pyruvate dehydrogenase E2 deficiency: a potentially treatable cause of episodic dystonia. Eur J Paediatr Neurol. 2010;14:349–53.

    Article  Google Scholar 

  28. Castiglioni C, Verrigni D, Okuma C, et al. Pyruvate dehydrogenase deficiency presenting as isolated paroxysmal exercise induced dystonia successfully reversed with thiamine supplementation. Case report and mini-review. Eur J Paediatr Neurol. 2015;19:497–503.

    Article  Google Scholar 

  29. Barnerias C, Saudubray JM, Touati G, et al. Pyruvate dehydrogenase complex deficiency: four neurological phenotypes with differing pathogenesis. Dev Med Child Neurol. 2010;52:e1–9.

    Article  Google Scholar 

  30. Bruno M, Ravina B, Garraux G, et al. Exercise-induced dystonia as a preceding symptom of familial Parkinson’s disease. Mov Disord. 2004;19:228–30.

    Article  Google Scholar 

  31. Bozi M, Bhatia KP. Paroxysmal exercise-induced dystonia as a presenting feature of young-onset Parkinson’s disease. Mov Disord. 2003;18:1545–7.

    Article  Google Scholar 

  32. Yoshimura K, Kanki R. Child-onset paroxysmal exercise-induced dystonia as the initial manifestation of hereditary Parkinson’s disease. Parkinsonism Relat Disord. 2018;49:108–9.

    Article  Google Scholar 

  33. Leen WG, Wevers RA, Kamsteeg E-J, et al. Cerebrospinal fluid analysis in the workup of GLUT1 deficiency syndrome: a systematic review. JAMA Neurol. 2013;70:1440–4.

    Article  Google Scholar 

  34. Di Fonzo A, Monfrini E, Erro R. Genetics of movement disorders and the practicing clinician; who and what to test for? Curr Neurol Neurosci Rep. 2018;18(7):37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Erro .

Editor information

Editors and Affiliations

Electronic Supplementary Material

A 19-year-old girl with SLC2A1 mutations, whose baseline gait demonstrates mild spasticity of her right leg. An attack of PED is shown. (Originally appeared in Erro et al. [5])

There are no abnormalities when initiating cycling, while after 10 min a unilateral PED attack in the left foot occurs in a patient with early-onset PD. (Originally appeared in Erro et al. [5]) (MOV 9470 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scannapieco, S., Erro, R. (2021). Paroxysmal Exercise-Induced Dyskinesia. In: Sethi, K.D., Erro, R., Bhatia, K.P. (eds) Paroxysmal Movement Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-53721-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53721-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53720-3

  • Online ISBN: 978-3-030-53721-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics