Skip to main content

Part of the book series: Control Engineering ((CONTRENGIN))

  • 345 Accesses

Abstract

The phenomenon of time delay is a commonplace in almost every scientific discipline. Time delay refers to the amount of time it takes for the matter, energy, or information in a dynamic system to transfer from one place to another or to make their full impact on the system after their emergence. Such a lagging effect causes the change of current state of the system to rely on past values of its state and/or input. For instance, the economic model in [127] reveals that economic growth relies on population growth and technological advancement. In particular, the population growth does not take effect on the economic growth until it transitions to the labor growth, which potentially takes a couple of decades. Similarly, the technological advancement does not boost the economy until the productivity of the workforce is improved through technology innovations. Other examples of time delay in the study of biology, physics, mathematics, and engineering are many, and we will mention a few in the following subsection as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Prime Number Theorem: \(\lim _{x\rightarrow \infty }\frac {\pi (x)}{\frac {x}{\log (x)}}=1\).

References

  1. K. Abidi, Y. Yildiz and B. E. Korpe, “Explicit time-delay compensation in teleoperation: An adaptive control approach,” International Journal of Robust and Nonlinear Control, Vol. 26, No. 15, pp. 3388–3403, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  2. K. Abidi and I. Postlethwaite, “Discrete-time adaptive control for systems with input time-delay and non-sector bounded nonlinear functions,” IEEE Access, Vol. 7, pp. 4327–4337, 2019.

    Article  Google Scholar 

  3. K. Abidi, I. Postlethwaite and T. T. Teo, “Discrete-time adaptive control of nonlinear systems with input delay,” The 38th Chinese Control Conference, pp. 588–593, Guangzhou, China, 2019.

    Google Scholar 

  4. Z. Artstein, “Linear systems with delayed controls: a reduction,” IEEE Transactions on Automatic Control, Vol. 27, No. 4, pp. 869–879, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  5. K. J. Aström and R. M. Murray, Feedback Systems: an Introduction for Scientists and Engineers, Princeton University Press, 2010.

    Book  MATH  Google Scholar 

  6. N. Bekiaris-Liberis and M. Krstic, Nonlinear Control under Nonconstant Delays, Vol. 25, SIAM, 2013.

    Google Scholar 

  7. N. Bekiaris-Liberis and M. Krstic, “Predictor-feedback stabilization of multi-input nonlinear systems,” IEEE Transactions on Automatic Control, Vol. 62, No. 2, pp. 516–531, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Bellman and K. L. Cooke, Differential-Difference Equations, New York: Academic, 1963.

    MATH  Google Scholar 

  9. G. Besancon, D. Georges and Z. Benayache, “Asymptotic state prediction for continuous-time systems with delayed input and application to control,” The 2007 European Control Conference, pp. 1786–1791, Kos, Greece, 2007.

    Google Scholar 

  10. D. Bresch-Pietri and M. Krstic, “Adaptive trajectory tracking despite unknown input delay and plant parameters,” Automatica, Vol. 45, No. 9, pp. 2074–2081, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Bresch-Pietri and M. Krstic, “Delay-adaptive predictor feedback for systems with unknown long actuator delay,” IEEE Transactions on Automatic Control, Vol. 55, No. 9, pp. 2106–2112, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Cacace and A. Germani, “Output feedback control of linear systems with input, state and output delays by chains of predictors,” Automatica, Vol. 85, pp. 455–461, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Cahlon and D. Schmidt, “Stability criteria for certain high even order delay differential equations,” Journal of Mathematical Analysis and Applications, Vol. 334, No. 2, pp. 859–875, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. M. Chen, Z. Lin and Y. Shamash, Linear Systems Theory: A Structural Decomposition Approach, Springer Science & Business Media, 2004.

    Google Scholar 

  15. K. L. Cooke and Z. Grossman, “Discrete delay, distributed delay and stability switches,” Journal of Mathematical Analysis and Applications, Vol. 86, No. 2, pp. 592–627, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Elaydi and S. Zhang, “Stability and periodicity of difference equations with finite delay,” Funkcialaj Ekvacioj, Vol. 37, No. 3, pp. 401–413, 1994.

    MathSciNet  MATH  Google Scholar 

  17. K. Engelborghs, M. Dambrine and D. Roose, “Limitations of a class of stabilization methods for delay systems,” IEEE Transactions on Automatic Control, Vol. 46, No. 2, pp. 336–339, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. A. Fiagbedzi and A. E. Pearson, “Feedback stabilization of linear autonomous time lag systems,” IEEE Transactions on Automatic Control, Vol. 31, No. 9, pp. 847–855, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. A. Fiagbedzi and A. E. Pearson, “A multistage reduction technique for feedback stabilizing distributed time-lag systems,” Automatica, Vol. 23, No. 3, pp. 311–326, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Fridman, “New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems,” Systems & Control Letters, Vol. 43, No. 4, pp. 309–319, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Fridman, Introduction to Time-delay Systems: Analysis and Control, Springer, 2014.

    Book  MATH  Google Scholar 

  22. H. Gao and C. Wang, “A delay-dependent approach to robust H filtering for uncertain discrete-time state-delayed systems,” IEEE Transactions on Signal Processing, Vol. 52, No. 6, pp. 1631–1640, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Gao, J. Lam, C. Wang and Y. Wang, “Delay-dependent output-feedback stabilisation of discrete-time systems with time-varying state delay,” IEE Proceedings-Control Theory and Applications, Vol. 151, No. 6, pp. 691–698, 2004.

    Article  Google Scholar 

  24. H. Gao and T. Chen, “New results on stability of discrete-time systems with time-varying state delay,” IEEE Transactions on Automatic Control, Vol. 52, No. 2, pp. 328–334, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  25. Q. Gao and N. Olgac, “Bounds of imaginary spectra of LTI systems in the domain of two of the multiple time delays,” Automatica, Vol. 72. pp. 235–241, 2016.

    Google Scholar 

  26. H. Gorecki, S. Fuksa, P. Grabowski and A. Korytowski, Analysis and Synthesis of Time Delay Systems, New York: Wiley, 1989.

    MATH  Google Scholar 

  27. G. Gu and E. B. Lee, “Stability testing of time delay systems,” Automatica, Vol. 25, No. 5, pp. 777–780, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Gu, P. P. Khargonekar and E. B. Lee, “Approximation of infinite-dimensional systems,” IEEE Transactions on Automatic Control, Vol. 34, No. 6, pp. 610–618, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Gu, V. L. Kharitonov and J. Chen, Stability of Time-Delay Systems, Boston, MA: Birkhäuser, 2003.

    Book  MATH  Google Scholar 

  30. A. Halanay, Differential Equations: Stability, Oscillations, Time lags, Vol. 23, Academic Press, 1966.

    Google Scholar 

  31. J. K. Hale, Theory of Functional Differential Equations, New York: Springer, 1977.

    Book  MATH  Google Scholar 

  32. F. Hoppensteadt, “Predator-prey model,” Scholarpedia, Vol. 1, No. 10, pp. 1563, 2006.

    Google Scholar 

  33. D. Israelsson and A. Johnsson, “A theory for circumnutations in Helianthus annuus,” Physiologia Plantarum, Vol. 20, No. 4, pp. 957–976, 1967.

    Article  Google Scholar 

  34. M. Jankovic, “Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems,” IEEE Transactions on Automatic Control, Vol. 546, No. 7, pp. 1048–1060, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Jankovic, “Cross-term forwarding for systems with time delay,” IEEE Transactions on Automatic Control, Vol. 54, No. 3, pp. 498–511, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Jankovic, “Forwarding, backstepping, and finite spectrum assignment for time delay systems,” Automatica, Vol. 45, No. 1, pp. 2–9, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Jankovic, “Recursive predictor design for state and output feedback controllers for linear time delay systems,” Automatica, Vol. 46, pp. 510–517, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  38. V. L. Kharitonov, Time-delay Systems: Lyapunov Functionals and Matrices, Springer Science & Business Media, 2012.

    Google Scholar 

  39. V. L. Kharitonov, “An extension of the prediction scheme to the case of systems with both input and state delay,” Automatica, Vol. 50, No. 1, pp. 211–217, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  40. V. L. Kharitonov. “Predictor-based controls: the implementation problem,” Differential Equations, Vol. 51, No. 13, pp. 1675–1682, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  41. V. L. Kharitonov, “Predictor based stabilization of neutral type systems with input delay,” Automatica, Vol. 52, pp. 125–134, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  42. V. L. Kharitonov, “Prediction-based control for systems with state and several input delays,” Automatica, Vol. 79, pp. 11–16, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  43. N. N. Krasovskii, J. McCord and J. Gudeman, Stability of Motion, Stanford University Press, 1963.

    Google Scholar 

  44. M. Krstic and D. Bresch-Pietri, “Delay-adaptive full-state predictor feedback for systems with unknown long actuator delay,” The 2009 American Control Conference, St. Louis, U.S.A., pp. 4500–4505, 2009.

    Google Scholar 

  45. M. Krstic, Delay Compensation for Nonlinear, Adaptive, and PDE Systems, Boston: Birkhäuser, 2009.

    Book  MATH  Google Scholar 

  46. D. Ma and J. Chen, “Delay margin of low-order systems achievable by PID controllers,” IEEE Transactions on Automatic Control, Vol. 64, No. 5, pp. 1958–1973, 2018.

    Article  MathSciNet  MATH  Google Scholar 

  47. D. Ma, R. Tian, A. Zulfiqar, J. Chen and T. Chai, “Bounds on delay consensus margin of second-order multi-agent systems with robust position and velocity feedback protocol,” IEEE Transactions on Automatic Control, Vol. 64, No. 9, pp. 3780 - 3787, 2019.

    Article  MathSciNet  MATH  Google Scholar 

  48. M. S. Mahmoud, Robust Control and Filtering for Time-delay Systems, CRC Press, 2000.

    Book  MATH  Google Scholar 

  49. A. Z. Manitius and A. W. Olbrot, “Finite spectrum assignment for systems with delays,” IEEE Transactions on Automatic Control, Vol. 24, No. 4, pp. 541–553, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  50. D. Q. Mayne, “Control of linear systems with time delay,” Electronics Letters, Vol. 4, No. 20, pp. 439–440, 1968.

    Article  Google Scholar 

  51. F. Mazenc and M. Malisoff, “Local stabilization of nonlinear systems through the reduction model approach,” IEEE Transactions on Automatic Control, Vol. 59, No. 11, pp. 3033–3039, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  52. F. Mazenc and M. Malisoff, “Stabilization and robustness analysis for time-varying systems with time-varying delays using a sequential subpredictors approach,” Automatica, Vol. 82, pp. 118–127, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  53. F. Mazenc and M. Malisoff, “Stabilization of nonlinear time-varying systems through a new prediction based approach,” IEEE Transactions on Automatic Control, Vol. 62, No. 6, pp. 2908–2915, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  54. W. Michiels and S. I. Niculescu, Stability, Control, and Computation for Time-delay Systems: An Eigenvalue-based Approach, SIAM, 2014.

    Book  MATH  Google Scholar 

  55. S. Mondie and W. Michiels, “Finite spectrum assignment of unstable time-delay systems with a safe implementation,” IEEE Transactions on Automatic Control, Vol. 48, No. 12, pp. 2207–2212, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  56. N. Olgac and R. Sipahi, “An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems,” IEEE Transactions on Automatic Control, Vol. 47, No. 5, pp. 793–797, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  57. P. Pepe, “The problem of the absolute continuity for Lyapunov–Krasovskii functionals,” IEEE Transactions on Automatic Control, Vol. 52, No. 5, pp. 953–957, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  58. P. Pepe, “Input-to-state stabilization of stabilizable, time-delay, control-affine, nonlinear systems,” IEEE Transactions on Automatic Control, Vol. 54, No. 7, pp. 1688–1693, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  59. P. Pepe, G. Pola and M. D. Di Benedetto, “On Lyapunov–Krasovskii characterizations of stability notions for discrete-time systems with uncertain time-varying time delays,” IEEE Transactions on Automatic Control, Vol. 63, No. 6, pp. 1603–1617, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  60. P. Pepe and E. Fridman, “On global exponential stability preservation under sampling for globally Lipschitz time-delay systems,” Automatica, Vol. 82, pp. 295–300, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  61. P. Pepe, “Converse Lyapunov theorems for discrete-time switching systems with given switches digraphs,” IEEE Transactions on Automatic Control, Vol. 64, No. 6, pp. 2502–2508, 2018.

    Article  MathSciNet  MATH  Google Scholar 

  62. J. P. Richard, “Time-delay systems: an overview of some recent advances and open problems,” Automatica, Vol. 39, No. 10, pp. 1667–1694, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  63. O. M. Smith, “A controller to overcome deadtime”, ISA Journal, Vol. 6, No. 2, pp. 28–33, 1959.

    Google Scholar 

  64. G. Tao, “Model reference adaptive control of multivariable plants with delays,” International Journal of Control, Vol. 55, No. 2, pp. 393–414, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  65. V. Van Assche, M. Dambrine, J. F. Lafay and J. P. Richard, “Some problems arising in the implementation of distributed-delay control laws,” Proc. 38th IEEE Conference on Decision and Control, Vol. 5, pp. 4668–4672, Phoenix, U.S.A., 1999.

    Google Scholar 

  66. G. H. D. Visme, “The density of prime numbers,” The Mathematical Gazette, Vol. 45, No. 351, pp. 13–14, 1961.

    Article  MathSciNet  MATH  Google Scholar 

  67. C. Wang, Z. Zuo and Z. Ding, “Control scheme for LTI systems with Lipschitz non-linearity and unknown time-varying input delay,” IET Control Theory & Applications, Vol. 11, No. 17, pp. 3191–3195, 2017.

    Article  MathSciNet  Google Scholar 

  68. P. J. Wangersky and W. J. Cunningham, “Time lag in prey-predator population models,” Ecology, Vol. 38, No. 1, pp. 136–139, 1957.

    Article  Google Scholar 

  69. E. M. Wright, “A functional equation in the heuristic theory of primes,” The Mathematical Gazette, Vol. 45, No. 351, pp. 15–16, 1961.

    Article  MathSciNet  MATH  Google Scholar 

  70. S.Y. Yoon and Z. Lin, “Predictor based control of linear systems with state, input and output delays,” Automatica, Vol. 53. pp. 385–391, 2015.

    Google Scholar 

  71. S. Zhang and M. P. Chen, “A new Razumikhin Theorem for delay difference equations,” Computers & Mathematics with Applications, Vol. 36, No. 10–12, pp. 405–412, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  72. X. Zhang, M. Wu, J. She and Y. He, “Delay-dependent stabilization of linear systems with time-varying state and input delays,” Automatica, Vol. 41, No. 8, pp. 1405–1412, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  73. B. Zhou, “Input delay compensation of linear systems with both state and input delays by nested prediction,” Automatica, Vol. 50, No. 5, pp. 1434–1443, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  74. J. Zhu, T. Qi, D. Ma and J. Chen, Limits of Stability and Stabilization of Time-delay Systems: A Small-Gain Approach, Springer, 2018.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wei, Y., Lin, Z. (2021). Introduction. In: Truncated Predictor Based Feedback Designs for Linear Systems with Input Delay. Control Engineering. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-53429-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53429-5_1

  • Published:

  • Publisher Name: Birkhäuser, Cham

  • Print ISBN: 978-3-030-53428-8

  • Online ISBN: 978-3-030-53429-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics