Skip to main content

Assessment of Cardiovascular Function

  • Chapter
  • First Online:
Pediatric Critical Care
  • 2795 Accesses

Abstract

Hemodynamics describes the complex interactions between myocardial function, blood flow, vascular pressure, resistance, and intravascular volume. Beginning in 1628 with William Harvey’s description of the circulation of blood, the study of hemodynamics has been focused on macrocirculatory measures such as stroke volume and vascular resistance. Recently, the concept of maintaining hemodynamic coherence between the macro- and microcirculations has led to greater study of microcirculatory assessment tools. Near-infrared spectroscopy and cardiovascular biomarkers are examples of tools that may better reflect microcirculatory integrity. Currently, most hemodynamic assessment tools remain macrocirculatory in nature and will be the focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Suggested Reading

  • Afshani N, et al. Clinical utility of B-type natriuretic peptide (NP) in pediatric cardiac surgery--a systematic review. Paediatr Anaesth. 2015;25(2):115–26.

    Article  PubMed  Google Scholar 

  • American College of Critical Care Medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock. Crit Care Med. 2017;45(6):1061–93.

    Google Scholar 

  • Barbeito A, Marks JB. Arterial and central pressure monitoring. Anesthesiol Clin. 2006;24:717–35.

    Article  PubMed  Google Scholar 

  • Bissonnette B. Pediatric anesthesia: principles and practices. 1st ed. New York: McGraw-Hill; 2002.

    Google Scholar 

  • Bloos F, Reinhart K. Venous oximetry. Intensive Care Med. 2005;31:911–3.

    Article  PubMed  Google Scholar 

  • Bourcier S, Pichereau C, Boelle PY, et al. Toe-to-room temperature gradient correlates with tissue perfusion and predicts outcome in selected critically ill patients with severe infections. Ann Intensive Care. 2016;6:63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bronicki RA. Hemodynamic monitoring. Pediatr Crit Care Med. 2016;17:S207–14.

    Article  PubMed  Google Scholar 

  • Cholley BP, Payen D. Noninvasive techniques for the measurement of cardiac output. Curr Opin Crit Care. 2005;11:424–9.

    Article  PubMed  Google Scholar 

  • Das BB. Plasma B-type natriuretic peptides in children with cardiovascular diseases. Pediatr Cardiol. 2010;31:1135–45.

    Article  PubMed  Google Scholar 

  • Desmond FA, Namachivayam S. Does near-infrared spectroscopy play a role in paediatric intensive care? BJA Educ. 2016;16(8):281–5.

    Article  Google Scholar 

  • Erdem Ö, Kuiper JW, Tibboel D. Hemodynamic coherence in critically ill pediatric patients. Best Pract Res Clin Anaesthesiol. 2016;30(4):499–510.

    Article  CAS  PubMed  Google Scholar 

  • Futterman C, Salvin JW, McManus A, et al. Inadequate oxygen delivery index dose is associated with cardiac arrest risk in neonates following cardiopulmonary bypass surgery. Resuscitation. 2019;142:74–80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaspar HA, Morhy SS. The role of focused echocardiography in pediatric intensive care: a critical appraisal. Biomed Res Int. 2015;2015:596451.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghanayem NS, Hoffman GM. Near infrared spectroscopy as a hemodynamic monitor in critical illness. Pediatr Crit Care Med. 2016;17:S201–6.

    Article  PubMed  Google Scholar 

  • Godje O, et al. Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability. Crit Care Med. 2002;30:52–8.

    Article  PubMed  Google Scholar 

  • Hofer CK, Ganter MT, Zollinger A. What technique should I use to measure cardiac output? Curr Opin Crit Care. 2007;13:308–17.

    Article  PubMed  Google Scholar 

  • Jone PN, Ivy DD. Echocardiography in pediatric pulmonary hypertension. Front Pediatr. 2014;2:1–15.

    Article  Google Scholar 

  • King MA, Garrison MM, Vavilala MS, et al. Complications associated with arterial catheterization in children. Pediatr Crit Care Med. 2008;9:367–71.

    Article  PubMed  Google Scholar 

  • Kleinman B. Understanding natural frequency and damping and how they relate to the measurement of blood pressure. J Clin Monit. 1989;5:137–47.

    Article  CAS  PubMed  Google Scholar 

  • Klugman D, Berger JT. Echocardiography and focused cardiac ultrasound. Pediatr Crit Care Med. 2016;17:S222–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambert RL, Boker JR, Maffei FA. National survey of bedside ultrasound use in pediatric critical care. Pediatr Crit Care Med. 2011;12:655–9.

    Article  PubMed  Google Scholar 

  • Lorente L, Santacreu R, Martin M, et al. Arterial catheter-related infection of 2,949 catheters. Crit Care. 2006;10:1–7.

    Google Scholar 

  • Lucet JC, Bouadma L, Zahar JR, et al. Infectious risk associated with arterial catheters compared to central venous catheters. Crit Care Med. 2010;38:1030–5.

    Article  PubMed  Google Scholar 

  • Mark JB. Atlas of cardiovascular monitoring. 1st ed. New York: Churchill Livingstone; 1998.

    Google Scholar 

  • Mihm FG, Rosenthal MH. Pulmonary artery catheterization. In: Benito JL, editor. Clinical procedures in anesthesia and intensive care. Philadelphia: JB Lippincott; 1994. p. 416.

    Google Scholar 

  • Miller RD. Anesthesia. 5th ed. Philadelphia: Churchill Livingstone; 2000.

    Google Scholar 

  • Mohan UR, Britto J, Habibi C, et al. Noninvasive measurement of cardiac output in children. Pediatr Cardiol. 2002;23:58–61.

    Article  CAS  PubMed  Google Scholar 

  • Morgan P, Al-Subaie N, Rhodes A. Minimally invasive cardiac output monitoring. Curr Opin Crit Care. 2008;14:322–6.

    Article  PubMed  Google Scholar 

  • Pérez-Casares A, Cesar S, Brunet-Garcia L, Sanchez-de-Toledo J. Echocardiographic evaluation of pericardial effusion and cardiac tamponade. Front Pediatr. 2017;5:79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pittman JA, Ping JS, Mark JB. Arterial and central venous pressure monitoring. Int Anesthesiol Clin. 2004;42(1):13–30.

    Article  PubMed  Google Scholar 

  • Pizov R, Cohen M, Weiss Y, et al. Positive end expiratory pressure-induced hemodynamic changes are reflected in the arterial pressure waveform. Crit Care Med. 1996;24:1381–7.

    Article  CAS  PubMed  Google Scholar 

  • Preisman S, Pfieffer U, Lieberman N, Perel A. New monitors of intravascular volume: a comparison of arterial pressure waveform analysis and the intrathoracic blood volume. Intensive Care Med. 1997;23:651–7.

    Article  CAS  PubMed  Google Scholar 

  • Reuter DA, Kirchner A, Felbinger TW, et al. Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Crit Care Med. 2003;31:1399–404.

    Article  PubMed  Google Scholar 

  • Robertson-Malt S, Malt GN, Farquhar V, Greer W. Heparin versus normal saline for patency of arterial lines. Cochrane Database Syst Rev. 2014;(5):CD007364.

    Google Scholar 

  • Rogers, L, Ray S, Johnson M, et.al. The inadequate oxygen delivery index and low cardiac output syndrome score as predictors of adverse events associated with low cardiac output syndrome early after cardiac bypass. Pediatr Crit Care Med 2019;20(8):737–743.

    Google Scholar 

  • Samraj RS, Nicolas L. Near infrared spectroscopy (NIRS) derived tissue oxygenation in critical illness. Clin Invest Med. 2015;38(5):E285–95.

    Article  CAS  PubMed  Google Scholar 

  • Schindler E, Kowald B, Suess H, Niehaus-Borquez B, Tausch B, Brecher A. Catheterization of the radial or brachial artery in neonates and infants. Paediatr Anaesth. 2005;15(8):677–82.

    Article  PubMed  Google Scholar 

  • Sevransky J. Clinical assessment of hemodynamically unstable patients. Curr Opin Crit Care. 2009;15:234–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tavernier B, Malchotine O, Lebuffe G, et al. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology. 1998;89:1313–21.

    Article  CAS  PubMed  Google Scholar 

  • Thiele RH, Bartels K, Gan TJ. Cardiac output monitoring: a contemporary assessment and review. Crit Care Med. 2015;43:177–85.

    Article  PubMed  Google Scholar 

  • Tobin MJ. Principles and practices of intensive care monitoring. New York: McGraw-Hill; 1998.

    Google Scholar 

  • Vernon C, Letourneau JL. Lactic acidosis: recognition, kinetics and associated prognosis. Crit Care Clin. 2010;26:255–83.

    Article  CAS  PubMed  Google Scholar 

  • Vieira R, Salvadori-Bittar C, Lopes M, et al. Systolic pressure variation as diagnostic method for hypovolemia during anesthesia for cardiac surgery. Rev Bras J Anestesiol. 2005;55(1):3–18.

    Google Scholar 

  • Yi L, Liu Z, Qiao L, et al. Does stroke volume variation predict fluid responsiveness in children: a systematic review and meta-analysis. PLoS One. 2017;12:e0177590. https://doi.org/10.1371/journal.pone.0177590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank A. Maffei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maffei, F.A. (2021). Assessment of Cardiovascular Function. In: Lucking, S.E., Maffei, F.A., Tamburro, R.F., Zaritsky, A. (eds) Pediatric Critical Care . Springer, Cham. https://doi.org/10.1007/978-3-030-53363-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53363-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53362-5

  • Online ISBN: 978-3-030-53363-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics