Skip to main content

Hemodynamics

  • Chapter
  • First Online:
Pediatric Critical Care

Abstract

The cardiovascular system is responsible for providing adequate blood flow delivering nutrients to meet the metabolic demands of the body and its organs. The principles governing blood flow and pressure in the vascular system are referred to as hemodynamics. The most significant function of the cardiovascular system is the delivery of oxygen needed to meet the demand for cellular oxygen consumption. Although increases in oxygen delivery can occur over time through an increase in hemoglobin concentration, during an acute illness, the primary physiologic response to an increase in oxygen demand is an increase in cardiac output. If cardiac output is not sufficient to meet the metabolic needs of the body as a whole, a redistribution of regional blood flow and constriction of venous capacitance vessels must occur to maintain adequate oxygen delivery to vital organs. If the redistribution of blood flow is insufficient to meet the metabolic demands of a specific organ, organ dysfunction will begin to develop. The cardiovascular system of an otherwise healthy child with acute illness will typically perform this redistribution of regional blood flow function well, but in the critically ill child, the physiologic response to increasing oxygen demand may be inadequate resulting in a shock state. Caring for the child with critical illness often requires interventions by the intensivist to balance oxygen and nutrient delivery with oxygen consumption and waste removal. In some cases, therapeutic interventions to support one system, such as positive pressure mechanical ventilation to support breathing, may have undesirable effects on the cardiovascular system. When caring for the critically ill child, it is important to have a fundamental understanding of normal cardiac physiology, cardiopulmonary interactions, and how critical illness and therapeutic interventions can alter cardiac function. This chapter reviews the physiology and function of the heart and how critical illness alters cardiovascular physiology. In addition, the unique interactions that occur between the heart and lungs will be discussed in both the healthy and ill child including the unique cardiopulmonary interactions in a child with single ventricle anatomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Suggested Readings

  • Aaronson PI, Ward JPT, Wiener CM. The cardiovascular system at a glance. 2nd ed. Massachusetts: Blackwell Publishing Ltd; 2004. p. 32.

    Google Scholar 

  • Ahuja P, Sdek P, Maclellan WR. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev. 2007;87:521–44.

    CAS  PubMed  Google Scholar 

  • Bancalari E, et al. Lung mechanics in congenital heart disease with increased and decreased pulmonary blood flow. J Pediatr. 1977;90(2):192–5.

    CAS  PubMed  Google Scholar 

  • Biondi JW, et al. The effect of incremental positive end-expiratory pressure on right ventricular hemodynamics and ejection fraction. Anesth Analg. 1988;67(2):144–51.

    CAS  PubMed  Google Scholar 

  • Blaustein AS, et al. Mechanisms of pulsus paradoxus during resistive respiratory loading and asthma. J Am Coll Cardiol. 1986;8(3):529–36.

    CAS  PubMed  Google Scholar 

  • Brierley J, Carcillo JA, Choong C, et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med. 2009;37:666–88.

    PubMed  PubMed Central  Google Scholar 

  • Brinker JA, et al. Leftward septal displacement during right ventricular loading in man. Circulation. 1980;61(3):626–33.

    CAS  PubMed  Google Scholar 

  • Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296–327.

    PubMed  Google Scholar 

  • Elzinga G, Westerhof N. How to quantify pump function of the heart. The value of variables derived from measurements on isolated muscle. Circ Res. 1979;44(3):303–8.

    CAS  PubMed  Google Scholar 

  • Fessler HE, et al. Effects of positive end-expiratory pressure on the canine venous return curve. Am Rev Respir Dis. 1992;146(1):4–10.

    CAS  PubMed  Google Scholar 

  • Fuhrman BP, et al. Pulmonary vascular resistance after cessation of positive end-expiratory pressure. J Appl Physiol. 1989;66(2):660–8.

    CAS  PubMed  Google Scholar 

  • Grasso S, et al. Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology. 2002;96(4):795–802.

    PubMed  Google Scholar 

  • Hayano J, et al. Respiratory sinus arrhythmia. A phenomenon improving pulmonary gas exchange and circulatory efficiency. Circulation. 1996;94(4):842–7.

    CAS  PubMed  Google Scholar 

  • Irvin CG, et al. Effect of breathing pattern on esophageal pressure gradients in humans. J Appl Physiol. 1984;57(1):168–75.

    CAS  PubMed  Google Scholar 

  • Jardin F, et al. Reevaluation of hemodynamic consequences of positive pressure ventilation: emphasis on cyclic right ventricular afterloading by mechanical lung inflation. Anesthesiology. 1990;72(6):966–70.

    CAS  PubMed  Google Scholar 

  • Jubran A, Grant BJ, Duffner LA, Collins EG, Lanuza DM, Hoffman LA, Tobin MJ. Effect of pressure support vs unassisted breathing through a tracheostomy collar on weaning duration in patients requiring prolonged mechanical ventilation: a randomized trial. JAMA. 2013;309(7):671–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kato T, Kasai T, Yatsu S, Murata A, Matsumoto H, Suda S, Hiki M, Shiroshita N, Kato M, Kawana F, et al. Acute effects of positive airway pressure on functional mitral regurgitation in patients with systolic heart failure. Front Physiol. 2017;8:921.

    PubMed  PubMed Central  Google Scholar 

  • Kornecki A, Shekerdemian LS, Adatia I, Bohn D. High-frequency oscillation in children after Fontan operation. Pediatr Crit Care Med. 2002;3(2):144–7.

    PubMed  Google Scholar 

  • Lellouche F, Dionne S, Simard S, Bussieres J, Dagenais F. High tidal volumes in mechanically ventilated patients increase organ dysfunction after cardiac surgery. Anesthesiology. 2012;116(5):1072–82.

    PubMed  Google Scholar 

  • Lilly LS. Pathophysiology of heart disease: a collaborative project of medical students and faculty, vol. 3. Baltimore: Lippincott Williams and Wilkins; 2003. p. 215.

    Google Scholar 

  • Lim SC, et al. Transient hemodynamic effects of recruitment maneuvers in three experimental models of acute lung injury. Crit Care Med. 2004;32(12):2378–84.

    PubMed  Google Scholar 

  • Meliones JN, Bove EL, Dekeon MK, Custer JR, Moler FW, Callow LR, Wilton NC, Rosen DB. High-frequency jet ventilation improves cardiac function after the Fontan procedure. Circulation. 1991;84(5 Suppl):III364–8.

    CAS  PubMed  Google Scholar 

  • Peters J, Kindred MK, Robotham JL. Transient analysis of cardiopulmonary interactions. I. Diastolic events. J Appl Physiol. 1988a;64(4):1506–17.

    CAS  PubMed  Google Scholar 

  • Peters J, Kindred MK, Robotham JL. Transient analysis of cardiopulmonary interactions. II. Systolic events. J Appl Physiol. 1988b;64(4):1518–26.

    CAS  PubMed  Google Scholar 

  • Peters J, et al. Negative intrathoracic pressure decreases independently left ventricular filling and emptying. Am J Phys. 1989;257(1 Pt 2):H120–31.

    CAS  Google Scholar 

  • Pinsky MR, Matuschak GM, Klain M. Determinants of cardiac augmentation by elevations in intrathoracic pressure. J Appl Physiol. 1985;58(4):1189–98.

    CAS  PubMed  Google Scholar 

  • Pinsky MR, et al. Hemodynamic effects of cardiac cycle-specific increases in intrathoracic pressure. J Appl Physiol. 1986;60(2):604–12.

    CAS  PubMed  Google Scholar 

  • Pinsky MR, et al. Ventricular assist by cardiac cycle-specific increases in intrathoracic pressure. Chest. 1987;91(5):709–15.

    CAS  PubMed  Google Scholar 

  • Pinsky MR, Desmet JM, Vincent JL. Effect of positive end-expiratory pressure on right ventricular function in humans. Am Rev Respir Dis. 1992;146(3):681–7.

    CAS  PubMed  Google Scholar 

  • Pinsky MR, Summer WR, Wise RA, Permutt S, Bromberger-Barnea B. Augmentation of cardiac function by elevation of intrathoracic pressure. J Appl Physiol Respir Environ Exerc Physiol. 1983;54(4):950–5.

    CAS  PubMed  Google Scholar 

  • Pizov R, et al. Positive end-expiratory pressure-induced hemodynamic changes are reflected in the arterial pressure waveform. Crit Care Med. 1996;24(8):1381–7.

    CAS  PubMed  Google Scholar 

  • Pouleur H, Hanet C, Gurne O, et al. Focus on diastolic dysfunction: a new approach to heart failure therapy. Br J Clin Pharmacol. 1989;28:41S–52S.

    PubMed  PubMed Central  Google Scholar 

  • Preisman S, et al. New monitors of intravascular volume: a comparison of arterial pressure waveform analysis and the intrathoracic blood volume. Intensive Care Med. 1997;23(6):651–7.

    CAS  PubMed  Google Scholar 

  • Riggs TW, Snider AR. Respiratory influence on right and left ventricular diastolic function in normal children. Am J Cardiol. 1989;63(12):858–61.

    CAS  PubMed  Google Scholar 

  • Romand JA, Shi W, Pinsky MR. Cardiopulmonary effects of positive pressure ventilation during acute lung injury. Chest. 1995;108(4):1041–8.

    CAS  PubMed  Google Scholar 

  • Rudolph AM. Congenital diseases of the heart. Chicago: Year Book Medical Publishers; 1974. p. 27.

    Google Scholar 

  • Schindler MB, et al. Increased respiratory system resistance and bronchial smooth muscle hypertrophy in children with acute postoperative pulmonary hypertension. Am J Respir Crit Care Med. 1995;152(4 Pt 1):1347–52.

    CAS  PubMed  Google Scholar 

  • Schulman DS, et al. Effect of positive end-expiratory pressure on right ventricular performance. Importance of baseline right ventricular function. Am J Med. 1988;84(1):57–67.

    CAS  PubMed  Google Scholar 

  • Shamsuzzaman AS, Somers VK. Cardiorespiratory interactions in neural circulatory control in humans. Ann N Y Acad Sci. 2001;940:488–99.

    CAS  PubMed  Google Scholar 

  • Shekerdemian LS, Bush A, Shore DF, Lincoln C, Redington AN. Cardiopulmonary interactions after Fontan operations: augmentation of cardiac output using negative pressure ventilation. Circulation. 1997;96(11):3934–42.

    CAS  PubMed  Google Scholar 

  • Shivaram U, et al. Cardiopulmonary responses to continuous positive airway pressure in acute asthma. J Crit Care. 1993;8(2):87–92.

    CAS  PubMed  Google Scholar 

  • Sengupta PP, Korinek J, Belohlavek M, et al. Left ventricle structure and function. JACC. 2006;48(10):1988–2001.

    PubMed  Google Scholar 

  • Sequeira V, Witjas-Paalberends R, Kuster DWD, et al. Cardiac myosin-binding protein C: hypertrophic cardiomyopathy mutations and structure-function relationships. Pflugers Arch - Eur J Physiol. 2014;466:201–6.

    CAS  Google Scholar 

  • Steiner S, Schannwell CM, Strauer BE. Left ventricular response to continuous positive airway pressure: role of left ventricular geometry. Respiration. 2008;76(4):393–7.

    PubMed  Google Scholar 

  • Starling EH. The Linacre lecture on the law of the heart. London: Longmanus, Green; 1918.

    Google Scholar 

  • Takata M, Robotham JL. Effects of inspiratory diaphragmatic descent on inferior vena caval venous return. J Appl Physiol. 1992;72(2):597–607.

    CAS  PubMed  Google Scholar 

  • Takata M, Wise RA, Robotham JL. Effects of abdominal pressure on venous return: abdominal vascular zone conditions. J Appl Physiol. 1990;69(6):1961–72.

    CAS  PubMed  Google Scholar 

  • Tavernier B, et al. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology. 1998;89(6):1313–21.

    CAS  PubMed  Google Scholar 

  • van den Berg PC, Grimbergen CA, Spaan JA, Pinsky MR. Positive pressure inspiration differentially affects right and left ventricular outputs in postoperative cardiac surgery patients. J Crit Care. 1997;12(2):56–65.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Hagen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hagen, S.A., Al-Subu, A.M., Thompson, N., Corden, T.E. (2021). Hemodynamics. In: Lucking, S.E., Maffei, F.A., Tamburro, R.F., Zaritsky, A. (eds) Pediatric Critical Care . Springer, Cham. https://doi.org/10.1007/978-3-030-53363-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53363-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53362-5

  • Online ISBN: 978-3-030-53363-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics