Skip to main content

DeStress: Deep Learning for Unsupervised Identification of Mental Stress in Firefighters from Heart-Rate Variability (HRV) Data

  • Chapter
  • First Online:
Explainable AI in Healthcare and Medicine

Abstract

In this work we perform a study of various unsupervised methods to identify mental stress in firefighter trainees based on unlabeled heart rate variability data. We collect RR interval time series data from nearly 100 firefighter trainees that participated in a drill. We explore and compare three methods in order to perform unsupervised stress detection: (1) traditional K-Means clustering with engineered time and frequency domain features (2) convolutional autoencoders and (3) long short-term memory (LSTM) autoencoders, both trained on the raw RR data combined with DBSCAN clustering and K-Nearest-Neighbors classification. We demonstrate that K-Means combined with engineered features is unable to capture meaningful structure within the data. On the other hand, convolutional and LSTM autoencoders tend to extract varying structure from the data pointing to different clusters with different sizes of clusters. We attempt at identifying the true stressed and normal clusters using the HRV markers of mental stress reported in the literature. We demonstrate that the clusters produced by the convolutional autoencoders consistently and successfully stratify stressed versus normal samples, as validated by several established physiological stress markers such as RMSSD, Max-HR, Mean-HR and LF-HF ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics in high dimensional space. Presented at the International Conference on Database Theory, pp. 420–434. Springer (2001)

    Google Scholar 

  2. Beaton, R., Murphy, S., Pike, K., Jarrett, M.: Stress-symptom factors in firefighters and paramedics (1995)

    Google Scholar 

  3. Bhardwaj, R., Natrajan, P., Balasubramanian, V.: Study to determine the effectiveness of deep learning classifiers for ECG based driver fatigue classification. Presented at the 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS), pp. 98–102. IEEE (2018)

    Google Scholar 

  4. Blásquez, J.C.C., Font, G.R., Ortís, L.C.: Heart-rate variability and precompetitive anxiety in swimmers. Psicothema 21, 531–536 (2009)

    Google Scholar 

  5. Camm, A.J., Malik, M., Bigger, J.T., Breithardt, G., Cerutti, S., Cohen, R.J., Coumel, P., Fallen, E.L., Kennedy, H.L., Kleiger, R.: Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996)

    Google Scholar 

  6. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015)

  7. Giannakakis, G., Grigoriadis, D., Giannakaki, K., Simantiraki, O., Roniotis, A., Tsiknakis, M.: Review on psychological stress detection using biosignals. IEEE Trans. Affect. Comput., 1 (2019)

    Google Scholar 

  8. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  9. Hannun, A.Y., Rajpurkar, P., Haghpanahi, M., Tison, G.H., Bourn, C., Turakhia, M.P., Ng, A.Y.: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 25, 65 (2019)

    Article  Google Scholar 

  10. Harris, M.B., Baloğlu, M., Stacks, J.R.: Mental health of trauma-exposed firefighters and critical incident stress debriefing. J. Loss Trauma 7, 223–238 (2002)

    Article  Google Scholar 

  11. Huysmans, D., Smets, E., De Raedt, W., Van Hoof, C., Bogaerts, K., Van Diest, I., Helic, D.: Unsupervised learning for mental stress detection. Presented at the Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies, pp. 26–35 (2018)

    Google Scholar 

  12. Hwang, B., You, J., Vaessen, T., Myin-Germeys, I., Park, C., Zhang, B.-T.: Deep ECGNet: an optimal deep learning framework for monitoring mental stress using ultra short-term ECG signals. Telemed. E-Health 24, 753–772 (2018)

    Article  Google Scholar 

  13. Järvelin-Pasanen, S., Sinikallio, S., Tarvainen, M.P.: Heart rate variability and occupational stress-systematic review. Ind. Health 56, 500–511 (2018)

    Article  Google Scholar 

  14. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24, 881–892 (2002)

    Article  Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  16. Kivimäki, M., Leino-Arjas, P., Luukkonen, R., Riihimäi, H., Vahtera, J., Kirjonen, J.: Work stress and risk of cardiovascular mortality: prospective cohort study of industrial employees. BMJ 325, 857 (2002)

    Article  Google Scholar 

  17. Salahuddin, L., Cho, J., Jeong, M.G., Kim, D.: Ultra short term analysis of heart rate variability for monitoring mental stress in mobile settings. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Presented at the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4656–4659 (2007)

    Google Scholar 

  18. Laborde, S., Mosley, E., Thayer, J.F.: Heart rate variability and cardiac vagal tone in psychophysiological research-recommendations for experiment planning, data analysis, and data reporting. Front. Psychol. 8, 213 (2017)

    Article  Google Scholar 

  19. McCraty, R., Shaffer, F.: Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob. Adv. Health Med. 4, 46–61 (2015)

    Article  Google Scholar 

  20. Medina, L.: Identification of stress states from ECG signals using unsupervised learning methods. Presented at the Portuguese Conference on Pattern Recognition-RecPad (2009)

    Google Scholar 

  21. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Raykov, Y.P., Boukouvalas, A., Baig, F., Little, M.A.: What to do when k-means clustering fails: a simple yet principled alternative algorithm. PLoS ONE 11, e0162259 (2016). https://doi.org/10.1371/journal.pone.0162259

    Article  Google Scholar 

  23. Salminen, S., Kivimäki, M., Elovainio, M., Vahtera, J.: Stress factors predicting injuries of hospital personnel. Am. J. Ind. Med. 44, 32–36 (2003)

    Article  Google Scholar 

  24. Schubert, E., Sander, J., Ester, M., Kriegel, H.P., Xu, X.: DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Trans. Database Syst. (TODS) 42, 19 (2017)

    Article  MathSciNet  Google Scholar 

  25. Shaffer, F., Ginsberg, J.P.: An overview of heart rate variability metrics and norms. Front. Public Health 5, 258 (2017)

    Article  Google Scholar 

  26. Smets, E., Casale, P., Großekathöfer, U., Lamichhane, B., De Raedt, W., Bogaerts, K., Van Diest, I., Van Hoof, C.: Comparison of machine learning techniques for psychophysiological stress detection. Presented at the International Symposium on Pervasive Computing Paradigms for Mental Health, pp. 13–22. Springer (2015)

    Google Scholar 

  27. Song, S.H., Kim, D.K.: Development of a stress classification model using deep belief networks for stress monitoring. Healthc. Inform. Res. 23, 285–292 (2017)

    Article  Google Scholar 

  28. Soori, H., Rahimi, M., Mohseni, H.: Occupational stress and work-related unintentional injuries among Iranian car manufacturing workers (2008)

    Google Scholar 

  29. Sun, F.T., Kuo, C., Cheng, H.T., Buthpitiya, S., Collins, P., Griss, M.: Activity-aware mental stress detection using physiological sensors. In: Gris, M., Yang, G. (eds.) Mobile Computing, Applications, and Services, pp. 282–301. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  30. Taelman, J., Vandeput, S., Spaepen, A., Van Huffel, S.: Influence of mental stress on heart rate and heart rate variability. Presented at the 4th European Conference of the International Federation for Medical and Biological Engineering, pp. 1366–1369. Springer (2009)

    Google Scholar 

  31. von Rosenberg, W., Chanwimalueang, T., Adjei, T., Jaffer, U., Goverdovsky, V., Mandic, D.P.: Resolving ambiguities in the LF/HF ratio: LF-HF scatter plots for the categorization of mental and physical stress from HRV. Front. Physiol. 8, 360 (2017). https://doi.org/10.3389/fphys.2017.00360

    Article  Google Scholar 

  32. Wang, L., Zhou, X.: Detection of congestive heart failure based on LSTM-based deep network via short-term RR intervals. Sensors 19, 1502 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Oskooei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oskooei, A., Chau, S.M., Weiss, J., Sridhar, A., Martínez, M.R., Michel, B. (2021). DeStress: Deep Learning for Unsupervised Identification of Mental Stress in Firefighters from Heart-Rate Variability (HRV) Data. In: Shaban-Nejad, A., Michalowski, M., Buckeridge, D.L. (eds) Explainable AI in Healthcare and Medicine. Studies in Computational Intelligence, vol 914. Springer, Cham. https://doi.org/10.1007/978-3-030-53352-6_9

Download citation

Publish with us

Policies and ethics