Skip to main content

Current Challenges and Future Directions in Diffusion MRI: From Model- to Data- Driven Analysis

  • Conference paper
  • First Online:
Computational Diffusion MRI

Abstract

Diffusion weighted MRI is a prominent non-invasive modality to probe in vivo tissue micro- and macro-structure and has been widely applied throughout neuro- and body imaging. The promise of micro-scale analyses has been in the creation of virtual biopsies that provide information in place of physical histology, while tractography and its related methods offer maps of the neuronal wiring through virtual dissection. While both approaches have had strong successes at the group level, specificity and sensitivity at the individual dataset/single subject level have been more elusive. Herein, we reflect on current challenges and potential future directions in the context of a futurist piece. As such, we go beyond the reasonably well-established science to offer hypotheses/postulates/challenges to encourage discussion and exploration. We postulate that there are transformative opportunities available if we complement our perspective of diffusion MRI as a signal that is explained by a tractable biophysical model with one in which data driven machine learning can inform us about detection, localization, and assessment of both normal and abnormal brain tissue in both local (voxels) and global connectivity. Towards this end, this manuscript describes challenges associated with achieving virtual biopsy (i.e., microstructural modeling) and virtual dissection (i.e., fiber tractography) and suggests opportunities to use data-driven techniques to improve modeling geometry, to learn features of the signal that may prove useful as biomarkers, and to harmonize signal, techniques, and datasets to improve tissue characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Le Bihan, D., Iima, M.: Diffusion magnetic resonance imaging: what water tells us about biological tissues. PLoS Biol. 13, e1002203 (2015)

    Article  Google Scholar 

  2. Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. 213, 560–570 (2011)

    Article  Google Scholar 

  3. Mori, S., Crain, B.J., Chacko, V.P., Van Zijl, P.C.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. Official J. Am. Neurol. Assoc. Child Neurol. Soc. 45, 265–269 (1999)

    Google Scholar 

  4. Warach, S., Chien, D., Li, W., Ronthal, M., Edelman, R.: Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 42, 1717 (1992)

    Article  Google Scholar 

  5. Jones, D.K.: Diffusion MRI: theory, methods, and application. Oxford University Press, Oxford, New York (2010)

    Google Scholar 

  6. Le Bihan, D., Johansen-Berg, H.: Diffusion MRI at 25: exploring brain tissue structure and function. Neuroimage 61, 324–341 (2012)

    Article  Google Scholar 

  7. Koh, D.M., Collins, D.J.: Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am. J. Roentgenol. 188, 1622–1635 (2007)

    Article  Google Scholar 

  8. Nilsson, M., Englund, E., Szczepankiewicz, F., van Westen, D., Sundgren, P.C.: Imaging brain tumour microstructure. Neuroimage 182, 232–250 (2018)

    Article  Google Scholar 

  9. Alexander, D.C., Dyrby, T.B., Nilsson, M., Zhang, H.: Imaging brain microstructure with diffusion MRI: practicality and applications. NMR Biomed. 32, e3841 (2019)

    Article  Google Scholar 

  10. Mori, S., van Zijl, P.C.: Fiber tracking: principles and strategies—a technical review. NMR Biomed. 15, 468–480 (2002)

    Article  Google Scholar 

  11. Jones, D.K., Knösche, T.R., Turner, R.: White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73, 239–254 (2013)

    Article  Google Scholar 

  12. Schilling, K.G., Daducci, A., Maier-Hein, K., Poupon, C., Houde, J.C., Nath, V., Anderson, A.W., Landman, B.A., Descoteaux, M.: Challenges in diffusion MRI tractography—lessons learned from international benchmark competitions. Magn. Reson. Imaging 57, 194–209 (2019)

    Article  Google Scholar 

  13. Maier-Hein, K.H., Neher, P.F., Houde, J.C., Cote, M.A., Garyfallidis, E., Zhong, J., Chamberland, M., Yeh, F.C., Lin, Y.C., Ji, Q., Reddick, W.E., Glass, J.O., Chen, D.Q., Feng, Y., Gao, C., Wu, Y., Ma, J., He, R., Li, Q., Westin, C.F., Deslauriers-Gauthier, S., Gonzalez, J.O.O., Paquette, M., St-Jean, S., Girard, G., Rheault, F., Sidhu, J., Tax, C.M.W., Guo, F., Mesri, H.Y., David, S., Froeling, M., Heemskerk, A.M., Leemans, A., Bore, A., Pinsard, B., Bedetti, C., Desrosiers, M., Brambati, S., Doyon, J., Sarica, A., Vasta, R., Cerasa, A., Quattrone, A., Yeatman, J., Khan, A.R., Hodges, W., Alexander, S., Romascano, D., Barakovic, M., Auria, A., Esteban, O., Lemkaddem, A., Thiran, J.P., Cetingul, H.E., Odry, B.L., Mailhe, B., Nadar, M.S., Pizzagalli, F., Prasad, G., Villalon-Reina, J.E., Galvis, J., Thompson, P.M., Requejo, F.S., Laguna, P.L., Lacerda, L.M., Barrett, R., Dell’Acqua, F., Catani, M., Petit, L., Caruyer, E., Daducci, A., Dyrby, T.B., Holland-Letz, T., Hilgetag, C.C., Stieltjes, B., Descoteaux, M.: The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8, 1349 (2017)

    Article  Google Scholar 

  14. Novikov, D.S., Kiselev, V.G., Jespersen, S.N.: On modeling. Magn. Resona. Med. 79, 3172–3193 (2018)

    Article  Google Scholar 

  15. Walhovd, K.B., Johansen-Berg, H., Karadottir, R.T.: Unraveling the secrets of white matter–bridging the gap between cellular, animal and human imaging studies. Neuroscience 276, 2–13 (2014)

    Article  Google Scholar 

  16. Schilling, K.G., Janve, V., Gao, Y., Stepniewska, I., Landman, B.A., Anderson, A.W.: Histological validation of diffusion MRI fiber orientation distributions and dispersion. Neuroimage 165, 200–221 (2018)

    Article  Google Scholar 

  17. Schilling, K., Janve, V., Gao, Y., Stepniewska, I., Landman, B.A., Anderson, A.W.: Comparison of 3D orientation distribution functions measured with confocal microscopy and diffusion MRI. Neuroimage 129, 185–197 (2016)

    Article  Google Scholar 

  18. Salo, R.A., Belevich, I., Manninen, E., Jokitalo, E., Gröhn, O., Sierra, A.: Quantification of anisotropy and orientation in 3D electron microscopy and diffusion tensor imaging in injured rat brain. Neuroimage 172, 404–414 (2018)

    Article  Google Scholar 

  19. Kelm, N.D., West, K.L., Carson, R.P., Gochberg, D.F., Ess, K.C., Does, M.D.: Evaluation of diffusion kurtosis imaging in ex vivo hypomyelinated mouse brains. Neuroimage 124, 612–626 (2016)

    Article  Google Scholar 

  20. Jones, D.K., Basser, P.J.: Squashing peanuts and smashing pumpkins: how noise distorts diffusion-weighted MR data. Magn. Reson. Med. 52, 979–993 (2004)

    Article  Google Scholar 

  21. Chang, L.C., Jones, D.K., Pierpaoli, C.: RESTORE: robust estimation of tensors by outlier rejection. Magn. Reson. Med. 53, 1088–1095 (2005)

    Article  Google Scholar 

  22. Jones, D.K., Horsfield, M.A., Simmons, A.: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn. Reson. Med. 42, 515–525 (1999)

    Article  Google Scholar 

  23. Fick, R.H.J., Sepasian, N., Pizzolato, M., Ianus, A., Deriche, R.: Assessing the feasibility of estimating axon diameter using diffusion models and machine learning. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 766–769 (Year)

    Google Scholar 

  24. Nedjati-Gilani, G.L., Schneider, T., Hall, M.G., Cawley, N., Hill, I., Ciccarelli, O., Drobnjak, I., Wheeler-Kingshott, C.A.G., Alexander, D.C.: Machine learning based compartment models with permeability for white matter microstructure imaging. NeuroImage 150, 119–135 (2017)

    Article  Google Scholar 

  25. Nath, V., Schilling, K.G., Parvathaneni, P., Hansen, C.B., Hainline, A.E., Huo, Y., Blaber, J.A., Lyu, I., Janve, V., Gao, Y., Stepniewska, I., Anderson, A.W., Landman, B.A.: Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted MRI. Magn. Reson. Imaging 62, 220–227 (2019)

    Article  Google Scholar 

  26. Ginsburger, K., Matuschke, F., Poupon, F., Mangin, J.-F., Axer, M., Poupon, C.: MEDUSA: A GPU-based tool to create realistic phantoms of the brain microstructure using tiny spheres. NeuroImage 193, 10–24 (2019)

    Article  Google Scholar 

  27. Palombo, M., Alexander, D.C., Zhang, H.: A generative model of realistic brain cells with application to numerical simulation of the diffusion-weighted MR signal. NeuroImage 188, 391–402 (2019)

    Article  Google Scholar 

  28. Burcaw, L.M., Fieremans, E., Novikov, D.S.: Mesoscopic structure of neuronal tracts from time-dependent diffusion. Neuroimage 114, 18–37 (2015)

    Article  Google Scholar 

  29. Novikov, D.S., Jensen, J.H., Helpern, J.A., Fieremans, E.: Revealing mesoscopic structural universality with diffusion. Proc. Natl. Acad. Sci. U S A 111, 5088–5093 (2014)

    Article  Google Scholar 

  30. Szczepankiewicz, F., van Westen, D., Englund, E., Westin, C.-F., Ståhlberg, F., Lätt, J., Sundgren, P.C., Nilsson, M.: The link between diffusion MRI and tumor heterogeneity: Mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE). NeuroImage 142, 522–532 (2016)

    Article  Google Scholar 

  31. Chiang, C.-W., Wang, Y., Sun, P., Lin, T.-H., Trinkaus, K., Cross, A.H., Song, S.-K.: Quantifying white matter tract diffusion parameters in the presence of increased extra-fiber cellularity and vasogenic edema. Neuroimage 101, 310–319 (2014)

    Article  Google Scholar 

  32. Bermudez, C., Plassard, A.J., Chaganti, S., Huo, Y., Aboud, K.E., Cutting, L.E., Resnick, S.M., Landman, B.A.: Anatomical context improves deep learning on the brain age estimation task. Magn. Reson. Imaging (2019)

    Google Scholar 

  33. Chaganti, S.: Contextualizing Medical Image Analyses with Electronic Health Histories (2019)

    Google Scholar 

  34. Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278, 563–577 (2015)

    Article  Google Scholar 

  35. Rogers, B.P., Blaber, J., Welch, E.B., Ding, Z., Anderson, A.W., Landman, B.A.: Stability of Gradient Field Corrections for Quantitative Diffusion MRI. In: Proceedings of SPIE—The International Society for Optical Engineering, p. 10132 (2017)

    Google Scholar 

  36. Bammer, R., Markl, M., Barnett, A., Acar, B., Alley, M.T., Pelc, N.J., Glover, G.H., Moseley, M.E.: Analysis and generalized correction of the effect of spatial gradient field distortions in diffusion-weighted imaging. Magn. Reson. Med. 50, 560–569 (2003)

    Article  Google Scholar 

  37. Rogers, B.P., Blaber, J., Newton, A.T., Hansen, C.B., Welch, E.B., Anderson, A.W., Luci, J.J., Pierpaoli, C., Landman, B.A.: Phantom-based field maps for gradient nonlinearity correction in diffusion imaging. In: Proceedings of SPIE—The International Society for Optical Engineering, p. 10573 (2018)

    Google Scholar 

  38. Tao, A.T., Shu, Y., Tan, E.T., Trzasko, J.D., Tao, S., Reid, R.D., Weavers, P.T., Huston, J., Bernstein, M.A.: Improving apparent diffusion coefficient accuracy on a compact 3T MRI scanner using gradient nonlinearity correction. J. Magn. Reson. Imaging 48, 1498–1507 (2018)

    Article  Google Scholar 

  39. Newitt, D.C., Tan, E.T., Wilmes, L.J., Chenevert, T.L., Kornak, J., Marinelli, L., Hylton, N.: Gradient nonlinearity correction to improve apparent diffusion coefficient accuracy and standardization in the american college of radiology imaging network 6698 breast cancer trial. J. Magn. Reson. Imaging 42, 908–919 (2015)

    Article  Google Scholar 

  40. Malyarenko, D.I., Ross, B.D., Chenevert, T.L.: Analysis and correction of gradient nonlinearity bias in apparent diffusion coefficient measurements. Magn. Reson. Med. 71, 1312–1323 (2014)

    Article  Google Scholar 

  41. Hansen, C.B., Nath, V., Hainline, A.E., Schilling, K.G., Parvathaneni, P., Bayrak, R.G., Blaber, J.A., Irfanoglu, O., Pierpaoli, C., Anderson, A.W., Rogers, B.P., Landman, B.A.: Characterization and correlation of signal drift in diffusion weighted MRI. Magn. Reson. Imaging 57, 133–142 (2019)

    Article  Google Scholar 

  42. Fortin, J.P., Parker, D., Tunç, B., Watanabe, T., Elliott, M.A., Ruparel, K., Roalf, D.R., Satterthwaite, T.D., Gur, R.C., Gur, R.E., Schultz, R.T., Verma, R., Shinohara, R.T.: Harmonization of multi-site diffusion tensor imaging data. Neuroimage 161, 149–170 (2017)

    Article  Google Scholar 

  43. Fortin, J.P., Cullen, N., Sheline, Y.I., Taylor, W.D., Aselcioglu, I., Cook, P.A., Adams, P., Cooper, C., Fava, M., McGrath, P.J., McInnis, M., Phillips, M.L., Trivedi, M.H., Weissman, M.M., Shinohara, R.T.: Harmonization of cortical thickness measurements across scanners and sites. Neuroimage 167, 104–120 (2018)

    Article  Google Scholar 

  44. Johnson, W.E., Li, C., Rabinovic, A.: Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007)

    Article  MATH  Google Scholar 

  45. Parvathaneni, P., Bao, S., Hainline, A., Huo, Y., Schilling, K.G., Kang, H., Williams, O., Woodward, N.D., Resnick, S.M., Zald, D.H.: Harmonization of white and gray matter features in diffusion microarchitecture for cross-sectional studies. In: Computer Aided Intervention and Diagnostics in Clinical and Medical Images, pp. 21–29. Springer, Berlin (2019)

    Google Scholar 

  46. Mirzaalian, H., Ning, L., Savadjiev, P., Pasternak, O., Bouix, S., Michailovich, O., Grant, G., Marx, C.E., Morey, R.A., Flashman, L.A., George, M.S., McAllister, T.W., Andaluz, N., Shutter, L., Coimbra, R., Zafonte, R.D., Coleman, M.J., Kubicki, M., Westin, C.F., Stein, M.B., Shenton, M.E., Rathi, Y.: Inter-site and inter-scanner diffusion MRI data harmonization. Neuroimage 135, 311–323 (2016)

    Article  Google Scholar 

  47. Prohl, A.K., Scherrer, B., Tomas-Fernandez, X., Filip-Dhima, R., Kapur, K., Velasco-Annis, C., Clancy, S., Carmody, E., Dean, M., Valle, M., Prabhu, S.P., Peters, J.M., Bebin, E.M., Krueger, D.A., Northrup, H., Wu, J.Y., Sahin, M., Warfield, S.K.: Reproducibility of structural and diffusion tensor imaging in the TACERN multi-center study. Frontiers Integr. Neurosci. 13, 24 (2019)

    Article  Google Scholar 

  48. Provenzale, J.M., Taylor, B.A., Wilde, E.A., Boss, M., Schneider, W.: Analysis of variability of fractional anisotropy values at 3T using a novel diffusion tensor imaging phantom. Neuroradiol J 31, 581–586 (2018)

    Article  Google Scholar 

  49. Fan, Q., Nummenmaa, A., Wichtmann, B., Witzel, T., Mekkaoui, C., Schneider, W., Wald, L.L., Huang, S.Y.: Validation of diffusion MRI estimates of compartment size and volume fraction in a biomimetic brain phantom using a human MRI scanner with 300 mT/m maximum gradient strength. Neuroimage 182, 469–478 (2018)

    Article  Google Scholar 

  50. Fan, Q., Nummenmaa, A., Wichtmann, B., Witzel, T., Mekkaoui, C., Schneider, W., Wald, L.L., Huang, S.Y.: A comprehensive diffusion MRI dataset acquired on the MGH Connectome scanner in a biomimetic brain phantom. Data Brief 18, 334–339 (2018)

    Article  Google Scholar 

  51. Tax, C.M., Grussu, F., Kaden, E., Ning, L., Rudrapatna, U., John Evans, C., St-Jean, S., Leemans, A., Koppers, S., Merhof, D., Ghosh, A., Tanno, R., Alexander, D.C., Zappalà, S., Charron, C., Kusmia, S., Linden, D.E., Jones, D.K., Veraart, J.: Cross-scanner and cross-protocol diffusion MRI data harmonisation: a benchmark database and evaluation of algorithms. Neuroimage 195, 285–299 (2019)

    Article  Google Scholar 

  52. St-Jean, S., Coupé, P., Descoteaux, M.: Non Local Spatial and Angular Matching: enabling higher spatial resolution diffusion MRI datasets through adaptive denoising. Med. Image Anal. 32, 115–130 (2016)

    Article  Google Scholar 

  53. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “siamese” time delay neural network. In: Advances in Neural Information Processing Systems, pp. 737–744 (Year)

    Google Scholar 

  54. Nath, V., Parvathaneni, P., Hansen, C.B., Hainline, A.E., Bermudez, C., Remedios, S., Blaber, J.A., Schilling, K.G., Lyu, I., Janve, V.: Inter-scanner harmonization of high angular resolution DW-MRI using null space deep learning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 193–201. Springer, Berlin (Year)

    Google Scholar 

  55. Wakana, S., Caprihan, A., Panzenboeck, M.M., Fallon, J.H., Perry, M., Gollub, R.L., Hua, K., Zhang, J., Jiang, H., Dubey, P.: Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36, 630–644 (2007)

    Article  Google Scholar 

  56. Koutsarnakis, C., Liakos, F., Kalyvas, A.V., Sakas, D.E., Stranjalis, G.: A laboratory manual for stepwise cerebral white matter fiber dissection. World Neurosurg. 84, 483–493 (2015)

    Article  Google Scholar 

  57. Catani, M., De Schotten, M.T.: A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44, 1105–1132 (2008)

    Google Scholar 

  58. Jones, D.K., Nilsson, M.: Tractometry and the hunt for the missing link: a physicist perspective. Microstruct. Learn. 38 (2014)

    Google Scholar 

  59. Bells, S., Cercignani, M., Deoni, S., Assaf, Y., Pasternak, O., Evans, C., Leemans, A., Jones, D.: Tractometry–comprehensive multi-modal quantitative assessment of white matter along specific tracts. In: Proceedings ISMRM (Year)

    Google Scholar 

  60. Schilling, K.G., Nath, V., Hansen, C., Parvathaneni, P., Blaber, J., Gao, Y., Neher, P., Aydogan, D.B., Shi, Y., Ocampo-Pineda, M., Schiavi, S., Daducci, A., Girard, G., Barakovic, M., Rafael-Patino, J., Romascano, D., Rensonnet, G., Pizzolato, M., Bates, A., Fischi, E., Thiran, J.-P., Canales-Rodríguez, E.J., Huang, C., Zhu, H., Zhong, L., Cabeen, R., Toga, A.W., Rheault, F., Theaud, G., Houde, J.-C., Sidhu, J., Chamberland, M., Westin, C.-F., Dyrby, T.B., Verma, R., Rathi, Y., Irfanoglu, M.O., Thomas, C., Pierpaoli, C., Descoteaux, M., Anderson, A.W., Landman, B.A.: Limits to the anatomical accuracy of diffusion tractography using modern approaches. NeuroImage (2019)

    Google Scholar 

  61. Knösche, T.R., Anwander, A., Liptrot, M., Dyrby, T.B.: Validation of tractography: comparison with manganese tracing. Hum. Brain Mapp. 36, 4116–4134 (2015)

    Article  Google Scholar 

  62. Ambrosen, K.S., Eskildsen, S.F., Hinne, M., Krug, K., Lundell, H., Schmidt, M.N., van Gerven, M.A., Mørup, M., Dyrby, T.B.: Validation of structural brain connectivity networks: the impact of scanning parameters. NeuroImage 116207 (2019)

    Google Scholar 

  63. Thomas, C., Frank, Q.Y., Irfanoglu, M.O., Modi, P., Saleem, K.S., Leopold, D.A., Pierpaoli, C.: Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc. Natl. Acad. Sci. 111, 16574–16579 (2014)

    Article  Google Scholar 

  64. Schmahmann, J., Pandya, D.: Fiber Pathways of the Brain. OUP USA (2009)

    Google Scholar 

  65. Schmahmann, J.D., Pandya, D.N.: Fiber Pathways of the Brain. Oxford University Press, Oxford; New York (2006)

    Book  Google Scholar 

  66. Schilling, K.G., Nath, V., Hansen, C., Parvathaneni, P., Blaber, J., Gao, Y., Neher, P., Aydogan, D.B., Shi, Y., Ocampo-Pineda, M., Schiavi, S., Daducci, A., Girard, G., Barakovic, M., Rafael-Patino, J., Romascano, D., Rensonnet, G., Pizzolato, M., Bates, A., Fischi, E., Thiran, J.P., Canales-Rodríguez, E.J., Huang, C., Zhu, H., Zhong, L., Cabeen, R., Toga, A.W., Rheault, F., Theaud, G., Houde, J.C., Sidhu, J., Chamberland, M., Westin, C.F., Dyrby, T.B., Verma, R., Rathi, Y., Irfanoglu, M.O., Thomas, C., Pierpaoli, C., Descoteaux, M., Anderson, A.W., Landman, B.A.: Limits to anatomical accuracy of diffusion tractography using modern approaches. Neuroimage 185, 1–11 (2019)

    Article  Google Scholar 

  67. Schilling, K.G., Gao, Y., Stepniewska, I., Janve, V., Landman, B.A., Anderson, A.W.: Anatomical accuracy of standard-practice tractography algorithms in the motor system—a histological validation in the squirrel monkey brain. Magn. Reson. Imaging 55, 7–25 (2019)

    Article  Google Scholar 

  68. Thomas, C., Ye, F.Q., Irfanoglu, M.O., Modi, P., Saleem, K.S., Leopold, D.A., Pierpaoli, C.: Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc. Natl. Acad. Sci. U S A 111, 16574–16579 (2014)

    Article  Google Scholar 

  69. Donahue, C.J., Sotiropoulos, S.N., Jbabdi, S., Hernandez-Fernandez, M., Behrens, T.E., Dyrby, T.B., Coalson, T., Kennedy, H., Knoblauch, K., Van Essen, D.C., Glasser, M.F.: Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey. J. Neurosci. 36, 6758–6770 (2016)

    Article  Google Scholar 

  70. De Leener, B., Fonov, V.S., Collins, D.L., Callot, V., Stikov, N., Cohen-Adad, J.: PAM50: unbiased multimodal template of the brainstem and spinal cord aligned with the ICBM152 space. Neuroimage 165, 170–179 (2018)

    Article  Google Scholar 

  71. Yendiki, A., Panneck, P., Srinivasan, P., Stevens, A., Zöllei, L., Augustinack, J., Wang, R., Salat, D., Ehrlich, S., Behrens, T., Jbabdi, S., Gollub, R., Fischl, B.: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Frontiers Neuroinform. 5, 23 (2011)

    Article  Google Scholar 

  72. Chamberland, M., Raven, E.P., Genc, S., Duffy, K., Descoteaux, M., Parker, G.D., Tax, C.M.W., Jones, D.K.: Dimensionality reduction of diffusion MRI measures for improved tractometry of the human brain. Neuroimage 200, 89–100 (2019)

    Article  Google Scholar 

  73. Rheault, F., Houde, J.C., Descoteaux, M.: Visualization, Interaction and Tractometry: dealing with Millions of Streamlines from Diffusion MRI Tractography. Frontiers Neuroinform. 11, 42 (2017)

    Article  Google Scholar 

  74. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010)

    Article  Google Scholar 

  75. Chamberland, M., Raven, E.P., Genc, S., Duffy, K., Descoteaux, M., Parker, G.D., Tax, C.M., Jones, D.K.: Dimensionality reduction of diffusion MRI measures for improved tractometry of the human brain. NeuroImage (2019)

    Google Scholar 

  76. Yeh, F.-C., Vettel, J.M., Singh, A., Poczos, B., Grafton, S.T., Erickson, K.I., Tseng, W.-Y.I., Verstynen, T.D.: Quantifying differences and similarities in whole-brain white matter architecture using local connectome fingerprints. PLoS Comput. Biol. 12, e1005203 (2016)

    Article  Google Scholar 

  77. Gleichgerrcht, E., Kocher, M., Bonilha, L.: Connectomics and graph theory analyses: novel insights into network abnormalities in epilepsy. Epilepsia 56, 1660–1668 (2015)

    Article  Google Scholar 

  78. Gleichgerrcht, E., Munsell, B., Bhatia, S., Vandergrift III, W.A., Rorden, C., McDonald, C., Edwards, J., Kuzniecky, R., Bonilha, L.: Deep learning applied to whole-brain connectome to determine seizure control after epilepsy surgery. Epilepsia 59, 1643–1654 (2018)

    Article  Google Scholar 

  79. Nath, V., Schilling, K.G., Parvathaneni, P., Huo, Y., Blaber, J.A., Hainline, A.E., Barakovic, M., Romascano, D., Rafael-Patino, J., Frigo, M., Girard, G., Thiran, J.P., Daducci, A., Rowe, M., Rodrigues, P., Prčkovska, V., Aydogan, D.B., Sun, W., Shi, Y., Parker, W.A., Ould Ismail, A.A., Verma, R., Cabeen, R.P., Toga, A.W., Newton, A.T., Wasserthal, J., Neher, P., Maier-Hein, K., Savini, G., Palesi, F., Kaden, E., Wu, Y., He, J., Feng, Y., Paquette, M., Rheault, F., Sidhu, J., Lebel, C., Leemans, A., Descoteaux, M., Dyrby, T.B., Kang, H., Landman, B.A.: Tractography reproducibility challenge with empirical data (TraCED): the 2017 ISMRM diffusion study group challenge. J. Magn. Reson. Imaging (2019)

    Google Scholar 

  80. Van Essen, D.C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T., Bucholz, R., Chang, A., Chen, L., Corbetta, M., Curtiss, S.W.: The Human Connectome Project: a data acquisition perspective. Neuroimage 62, 2222–2231 (2012)

    Article  Google Scholar 

  81. Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M.: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015)

    Article  Google Scholar 

  82. Jernigan, T.L., Brown, T.T., Hagler Jr., D.J., Akshoomoff, N., Bartsch, H., Newman, E., Thompson, W.K., Bloss, C.S., Murray, S.S., Schork, N.: The pediatric imaging, neurocognition, and genetics (PING) data repository. Neuroimage 124, 1149–1154 (2016)

    Article  Google Scholar 

  83. Zhang, Y., Zhang, J., Oishi, K., Faria, A.V., Jiang, H., Li, X., Akhter, K., Rosa-Neto, P., Pike, G.B., Evans, A.: Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. Neuroimage 52, 1289–1301 (2010)

    Article  Google Scholar 

  84. Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M.: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487–1505 (2006)

    Article  Google Scholar 

  85. Guevara, M., Román, C., Houenou, J., Duclap, D., Poupon, C., Mangin, J.F., Guevara, P.: Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography. Neuroimage 147, 703–725 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH R01EB017230, NIH R01NS058639, and NIH T32EB001628.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bennett A. Landman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schilling, K.G., Rogers, B., Anderson, A.W., Landman, B.A. (2020). Current Challenges and Future Directions in Diffusion MRI: From Model- to Data- Driven Analysis. In: Bonet-Carne, E., Hutter, J., Palombo, M., Pizzolato, M., Sepehrband, F., Zhang, F. (eds) Computational Diffusion MRI. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-52893-5_6

Download citation

Publish with us

Policies and ethics