Skip to main content

Diffusion Anisotropy Identification by Short Diffusion-Diffusion Correlation Spectroscopy

  • Conference paper
  • First Online:
Computational Diffusion MRI

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Water diffusion is generally anisotropic in porous media, giving the opportunity to access the microstructure of a substance. Two-dimensional (2D) Diffusion-Diffusion COrrelation SpectroscopY (DDCOSY), which is one kind of multi-dimensional diffusometry (MUD) techniques, was introduced to reveal microscopic anisotropy by tracing molecular displacements in orthogonal spatial directions. As DDCOSY is most applicable to substances with long transverse relaxation times, a short version of DDCOSY (i.e. sDDCOSY) was proposed with two diffusion gradient pairs applied simultaneously. With the increased interest in applying the MUD techniques in more complex media, it should be noted that the non-zero off-diagonal diffusion coefficients may lead to ambiguous correlation results in macroscopically anisotropy systems. In this work, we investigate the behavior of off-diagonal diffusion coefficients and suppress their influences on final correlation maps by altering one pulsed-field-gradient (PFG) direction. Results from Monte-Carlo simulations in a three-dimensional confining domain with a bundle of capillaries orientated by a certain degree verified the correction. Further experiments on different capillary networks demonstrate the ability of the proposed approach to unveil sample microstructure. The proposed sDDCOSY approach allows for applying MUD techniques for both microscopic and macroscopic anisotropic systems, with potentials to combine with imaging encodings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Callaghan, P.T., Komlosh, M.E.: Locally anisotropic motion in a macroscopically isotropic system: displacement correlations measured using double pulsed gradient spin-echo NMR. Magn. Reson. Chem. 40(13), S15–S19 (2002)

    Article  Google Scholar 

  2. Callaghan, P.T., Furó, I.: Diffusion-diffusion correlation and exchange as a signature for local order and dynamics. J. Chem. Phys. 120(8), 4032–4038 (2004)

    Article  Google Scholar 

  3. Song, Y.Q., Zielinski, L., Ryu, S.: Two-dimensional NMR of diffusion systems. Phys. Rev. Lett. 100(24), 248002 (2008)

    Article  Google Scholar 

  4. Bernin, D., Topgaard, D.: NMR diffusion and relaxation correlation methods: new insights in heterogeneous materials. Current Opin. Colloid Interface Sci. 18(3), 166–172 (2013)

    Google Scholar 

  5. Paulsen, J.L., Song, Y.Q.: Two-dimensional diffusion time correlation experiment using a single direction gradient. J. Magn. Reson. 244, 6–11 (2014)

    Article  Google Scholar 

  6. Komlosh, M.E., Özarslan, E., Lizak, M., Horkayne-Szakaly, I., Freidlin, R.Z., Horkay, F., Basser, P.J.: Mapping average axon diameters in porcine spinal cord white matter and rat corpus callosum using d-PFG MRI. Neuroimage 78, 210–216 (2013)

    Article  Google Scholar 

  7. Komlosh, M.E., Benjamini, D., Hutchinson, E.B., King, S., Haber, M., Avram, A.V., Holtzclaw, L.A., Desai, A., Pierpaoli, C., Basser, P.J.: Using double pulsed-field gradient MRI to study tissue microstructure in traumatic brain injury (TBI). Microporous Mesoporous Mater. (2017)

    Google Scholar 

  8. Qiao, Y., Galvosas, P., Callaghan, P.T.: Diffusion correlation NMR spectroscopic study of anisotropic diffusion of water in plant tissues. Biophys. J. 89(4), 2899–2905 (2005)

    Article  Google Scholar 

  9. Zong, F., Ancelet, L.R., Hermans, I.F., Galvosas, P.: Determining mean fractional anisotropy using DDCOSY: preliminary results in biological tissues. Magn. Reson. Chem. 55(5), 498–507 (2017)

    Article  Google Scholar 

  10. Spindler, N.: Diffusion and flow investigations in natural porous media by nuclear magnetic resonance. Schriften des Forschungszentrums Jülich (2011)

    Google Scholar 

  11. Venkataramanan, L., Song, Y.Q., Hürlimann, M.D.: Solving fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions. IEEE Trans. Signal Process. 50(5), 1017–1026 (2002)

    Google Scholar 

  12. Zong, F., Spindler, N., Ancelet, L.R., Hermans, I.F., Galvosas, P.: Local and global anisotropy-recent re-implementation of 2D ILT diffusion methods. Microporous Mesoporous Mater. 269, 71–74 (2018)

    Article  Google Scholar 

  13. Callaghan, P.T., Eccles, C.D., Xia, Y.: NMR microscopy of dynamic displacements: \(k\)-space and \(q\)-space imaging. J. Phys. E 21(8), 820–822 (1988)

    Google Scholar 

  14. Song, Y.Q., Venkataramanan, L., Hürlimann, M.D., Flaum, M., Frulla, P., Straley, C.: T1–T2 correlation spectra obtained using a fast two-dimensional Laplace inversion. J. Magn. Reson. 154(2), 261–268 (2002)

    Article  Google Scholar 

  15. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. V. H. Winson Sons (1977)

    Google Scholar 

  16. Fieremans, E., De Deene, Y., Delputte, S., Ozdemir, M.S., D’Asseler, Y., Vlassenbroeck, J., Deblaere, K., Achten, E., Lemahieu, I.: Simulation and experimental verification of the diffusion in an anisotropic fiber phantom. J. Magn. Reson. 190(2), 189–199 (2008)

    Article  Google Scholar 

  17. Carr, H.Y., Purcell, E.M.: Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94, 630–638 (1954)

    Article  Google Scholar 

  18. Meiboom, S., Gill, D.: Modified spin-echo method for measuring nuclear relaxation times. Review in Scientific Instrument. 29(8), 688 (1958)

    Article  Google Scholar 

  19. de Graaf, R.A., Brown, P.B., McIntyre, S., Nixon, T.W., Behar, K.L., Rothman, D.L.: High magnetic field water and metabolite proton \(t_1\) and \(t_2\) relaxation in rat brain in vivo. Magn. Reson. Med. 56(2), 386–394 (2006)

    Article  Google Scholar 

  20. Benjamini, D., Basser, P.J.: Use of marginal distributions constrained optimization (MADCO) for accelerated 2D MRI relaxometry and diffusometry. J. Magne. Reson. 271, 40–45 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the New Zealand Ministry of Business, Innovation, and Employment (Grant E1990) and the Chinese National Major Scientific Equipment R&D Project (Grant ZDYZ2010-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangrong Zong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zong, F., Zhuo, Y., Spindler, N., Liu, H., Galvosas, P. (2020). Diffusion Anisotropy Identification by Short Diffusion-Diffusion Correlation Spectroscopy. In: Bonet-Carne, E., Hutter, J., Palombo, M., Pizzolato, M., Sepehrband, F., Zhang, F. (eds) Computational Diffusion MRI. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-52893-5_5

Download citation

Publish with us

Policies and ethics